
Arbitrum Chains Challenge Protocol
v2
Security Assessment

August 2, 2023

Prepared for:

Harry Kalodner, Steven Goldfeder, and Ed Felten
Offchain Labs

Prepared by: Jaime Iglesias and Simone Monica

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’s request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 6

Project Summary 9

Project Goals 11

Project Targets 12

Project Coverage 13

Codebase Maturity Evaluation 15

Summary of Findings 20

Detailed Findings 23

1. Go Root function does not check for an empty Merkle expansion 23

2. Go Root function does not accept Merkle expansion of MAX_LEVEL length 25

3. NewHistoryCommitment does not validate height 27

4. Unused errors 29

5. GeneratePrefixProof does not work in some cases 30

6. Divergence in VerifyPrefixProof error handling 32

7. Missing validation in Golang’s GeneratePrefixProof function 34

8. Substantial amount of code duplication 37

9. Consider implementing “sanity checks” as assertions 39

10. Allow one-step proofs for length one SmallStep-type unrivaled edges 40

11. Incorrect state transition in edgeAtOneStepProof 42

12. Lack of a terminal state 43

Trail of Bits 3 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

13. Possibly unnecessary state transition 44

14. Possible state transitions never happen 46

15. Consider failing early to minimize the impact of griefing attacks 47

16. Presumptive edge tracker never reaches confirmation 50

17. Front-running a validator can trigger a denial of service 52

18. *LevelZeroEdge snapshots are not updated 55

19. Claimed edge’s timer of a BigStep edge is counted twice 57

20. Top level assertion timer not included in honest path timer calculation 59

21. Incorrect input parameter used to get the unrivaled time of the honest top level
assertion 61

22. The earliestCreatedRivalBlockNumber function can be optimized to reduce
looping 63

23. The localTimer function can be optimized to reduce computation 65

24. Remove honest nodes from the mutual ids map 67

25. Unsafe Uint64 operation for block number 69

26. Watcher could miss edges validated by time 71

27. Possible nil deref when getting a top level assertion 73

28. Discrepancy between on and off-chain confirmation timers 74

29. Front-running certain validator operations leads to honest edges not being
tracked 76

30. Consider adding an EdgeAwaitingConfirmation state to avoid unnecessary
computation 79

31. Unclear code comment regarding the ability to disable and enable staking 82

32. Validate the withdrawn amount by a staker is greater than zero 84

33. Consider deleting the staker when their stake is reduced to zero 86

34. Initial assertion’s status is not confirmed 88

Trail of Bits 4 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

A. Vulnerability Categories 91

B. Code Maturity Categories 93

C. Code Quality Recommendations 95

D. Incident Response Recommendations 106

E. Fix Review Results 108

Detailed Fix Review Results 111

Trail of Bits 5 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of the new version of Arbitrum
Chains’ Challenge Protocol. This new version introduces several fundamental changes to
the protocol to mitigate the delay attack scenarios the previous version was weak to.

A team of two consultants conducted the review from March 27 to April 21, from May 1 to
May 5, and from May 15 to June 16, for a total of 20 engineer-weeks of effort. Our testing
efforts focused on the review of the new challenge protocol implementation. With full
access to source code and documentation, we performed static and dynamic testing of the
system, using automated and manual processes.

It is worth mentioning that we reviewed the project as it was being developed, and each
week the scope of the review shifted based on the new developments. While this allowed
us to give more actionable feedback each week, it also meant that we often reviewed code
that was still a work in progress.

Observations and Impact
We found that the off-chain systems’ decision making did not rely on the smart contract
errors and state. This caused most of the issues related to the off-chain components,
including TOB-ARBCH-29 and TOB-ARBCH-17, which caused unexpected behavior in the
finite state machine implementation. Additionally, other issues related to a lack of thorough
testing (TOB-ARBCH-20 and TOB-ARBCH-19), although these were remediated as the review
advanced and development continued. Note that the off-chain components are still a work
in progress.

On the on-chain side, our findings were mostly related to duplicated code or possible
optimizations (TOB-ARBCH-8, TOB-ARBCH-10). The smart contracts are architectured using
a bottom-up approach, in which the libraries offer the core functionality that the
higher-level contracts then rely on (especially in the edge-related contacts and libraries).
This contributed to successful development and helped us review the implementations
with a relatively high degree of isolation. However, the assumptions for the
assertion-related contracts (rollup), especially around assertion creation and the
interactions with the inbox contract, were not as clear. Additionally, the documentation of
on-chain components was not thorough. In these contracts, we identified some
inconsistencies and unclear behavior (TOB-ARBCH-31, TOB-ARBCH-34).

Trail of Bits 6 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Finally, certain aspects of the system related to incentives for honest and dishonest actors
are not yet completely clear, which may contribute to griefing attacks through
front-running (TOB-ARBCH-19). These risks should be thoroughly documented.

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that Offchain Labs take the following steps:

● Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Expand and formalize documentation. The documentation around the rollup
contracts should be expanded, particularly assertion creation and the interactions
with the broader Arbitrum technology (e.g., the inbox). Additionally, all the
documentation that was provided during the review should be formalized and
expanded.

● Create an incident response plan. Because the challenge protocol is a critical
component of the Arbitrum technology, it is of utmost importance that suspicious
behavior is swiftly identified and, in the case that the off-chain system fails, there
are alternatives in place to continue advancing the chain (for example, manually
calling the challenge contracts). Creating an incident response plan that outlines
how the Offchain Labs team should react in such cases will enable quick action.

● Continue the development of the off-chain system with our findings and
recommendations in mind. Using the findings and recommendations presented in
this document will help the Offchain Labs team to identify and fix potential issues
during development.

● Improve testing. While the testing for the smart contracts was very thorough, the
tests present in the off-chain system were not (as highlighted by some of our
findings). Improving both the unit and integration tests will help identify unexpected
behavior. Consider deploying the new challenge protocol in a test environment and
testing the off-chain system with “abnormal” situations (for example, front-running
the validator), as this will help identify unexpected behavior.

Finally, consider implementing automated testing, such as fuzzing.

Trail of Bits 7 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 8

Medium 6

Low 5

Informational 13

Undetermined 2

CATEGORY BREAKDOWN

Category Count

Data Validation 21

Error Reporting 1

Patching 1

Undefined Behavior 11

Trail of Bits 8 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Mary O’Brien, Project Manager
dan@trailofbits.com mary.obrien@trailofbits.com

The following engineers were associated with this project:

Jaime Iglesias, Consultant Simone Monica, Consultant
jaime.iglesias@trailofbits.com simone.monica@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

March 24, 2023 Pre-project kickoff call

April 3, 2023 Status update meeting #1

April 10, 2023 Status update meeting #2

April 17, 2023 Status update meeting #3

April 24, 2023 Status update meeting #4

May 8, 2023 Status update meeting #5

May 22, 2023 Status update meeting #6

May 30, 2023 Status update meeting #7

June 5, 2023 Status update meeting #8

June 12, 2023 Status update meeting #9

June 20, 2023 Status update meeting #10

July 10, 2023 Delivery of report draft

Trail of Bits 9 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

mailto:dan@trailofbits.com
mailto:mary.obrien@trailofbits.com
mailto:jaime.iglesiasbotas@trailofbits.com
mailto:simone.monica@trailofbits.com

July 10, 2023 Report readout meeting

August 2, 2023 Delivery of comprehensive report

Trail of Bits 10 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Project Goals

The engagement was scoped to provide a security assessment of the Arbitrum chains
challenge protocol v2. Specifically, we sought to answer the following non-exhaustive list of
questions:

● Does the challenge protocol implementation respect the specification?

● Do the Solidity and Go implementations have the same behavior?

● Can an attacker win a challenge with an invalid state?

● Can an attacker DoS the challenge protocol?

● Can an honest actor always win a challenge within a certain bounded time?

● Can a staker withdraw their stake if the assertion’s staked won?

● Can the stake be stolen?

Trail of Bits 11 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the following target.

Challenge protocol v2
Repository https://github.com/OffchainLabs/challenge-protocol-v2

Type Solidity / Go

Version a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73

a55262291fcafdf817ff03cf4b2848b35e296584

59003322f6527ada1b2ef6ee1d6527fc8e01738b

45af73ab267985a34417812760a76695ca95095d

193cc8cb6630e26941e6abcad30aafe0a2fe619b

56ad6d01077b963042ef6a5b7d1807ba9296565f

28770065aeaeba40f72f8ef8158e9dcf72aa6678

f8853e2b27cb882d89a2e8102838d143d63bf1cc

aefb72f1a90b7ca313f6fb29930ae57da5b21a65

c8d60a59cc39435562a695eec80693c5fb1bd521

c2cc7813cdc3b8d6be73d3dbc32f9afc9ed536e6

Platform Ethereum / Arbitrum

Trail of Bits 12 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● Proof Utilities. The Solidity and Go implementations of utilities check for prefix and
inclusion proof verification; additionally, the Go side can generate those proofs. We
assessed whether both implementations have the same behavior and respect the
specifications, and that the Go implementation does not have unhandled panics.

● Challenge Edge. A challenge is divided into sub-challenges: Block, BigStep, and
SmallStep. During these sub-challenges, actors who disagree about the state of the
L2 bisect their claims (edges) until they reach an edge of length one that they
disagree on; once that length-one edge is reached, actors can generate a proof of
the correctness of their edge and confirm it. This part of the system is mainly
composed of two Solidity libraries: EdgeChallengeManagerLib.sol and
ChallengeEdgeLib.sol. They allow the creation of new edges and their own
confirmation in four different ways: by time, by children, by claim, and by a one-step
proof. We reviewed these for the correct implementation of the specification
regarding creation, tracking unrivaled edge time, and that only valid states can be
confirmed.

● Edge Tracker. Part of the off-chain software (validator) to interact with the smart
contracts, the Edge Tracker keeps track of the edges created and their own state
transitions until an eventual confirmation. We reviewed the finite state machine for
the correct state transitions compared to the specifications; whether a malicious
actor can put the tracker in an undefined state; whether the validator software will
always arrive to an end; and whether denial-of-service attack vectors are possible
through front-running.

● Challenge Watcher. The Challenge Watcher is a singleton service available to all of
the spawned Edge Trackers. It tracks common information, such as the edges’
ancestors and an edge’s unrivaled time. We reviewed the Challenge Watcher for
possible issues, such as edges not tracked and erroneous computation of the
unrivaled time of the ancestors.

● Assertion Chain (Rollup). This is the main entrypoint of the challenge protocol, to
which validators submit their commitments to an L2 state history (e.g., assertions) to
initiate a challenge period. These contracts manage the creation of new assertions
along with the validator staking. We reviewed the assertion creation functionality,

Trail of Bits 13 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

staking, and confirmation, ensuring that these are consistent with the available
documentation and specification. We made sure that once an assertion is confirmed
(signaling the end of a challenge), no other assertions can ever be confirmed for that
challenge.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● Some of the smart contracts are meant to be used through a proxy architecture.
However, these proxies were not part of the scope of the review, and therefore we
cannot speak to the correctness of the system when integrated with them.

● Familiarizing ourselves with the new challenge protocol specification (i.e., the
whitepaper and the different proofs defined in it) was a very important part of the
engagement, and we did not identify any flaws in the specification. However,
ensuring the correctness of all the proofs presented in the whitepaper was not the
main focus of the review, and as a result, the proofs may warrant further review
(e.g., through a focused peer review of the paper).

● The off-chain system is still a work in progress, and we were able to review only
certain parts of it (e.g., the Edge Tracker and Challenge Watcher). As a result, it may
warrant further review once it is completed.

● We did not review the economic incentives of the protocol; additionally, these are
still unclear, as highlighted in TOB-ARBCH-15.

● We reviewed the challenge protocol only as an isolated component; we did not
review its integration with the broader Arbitrum technology.

Trail of Bits 14 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic Arithmetic operations used across the codebase (both in
the on and off-chain code) are very simple in nature (e.g.,
summation); additionally, they are all documented as
part of the challenge protocol specification described in
the whitepaper.

No overflow risk was detected on the smart contracts, as
they rely on Solidity’s 0.8 native overflow protection.
Additionally, all arithmetic operations involve timers
using block numbers and are upper-bounded by the
challenge period.

Note that while the off-chain system is still a work in
progress, we did identify some potential type-casting
risks (TOB-ARBCH-25).

Satisfactory

Auditing On the smart contract side, all critical state-changing
operations emit events. Additionally, on the off-chain
components, there are several instances of error logging
operations that will help the Offchain Labs team identify
suspicious behavior. Note, however, that we have
reviewed only some parts of the off-chain system and
that it is still a work in progress.

Finally, because the challenge protocol is a
mission-critical component of the Arbitrum technology, it
is very important that any suspicious behavior is
identified and solved as quickly as possible and that, in

Moderate

Trail of Bits 15 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

the case that the off-chain system fails to consistently
advance the challenge, there are other alternatives in
place to ensure the network’s safety (e.g., manually
calling the challenge contracts).

While the Offchain labs team has mentioned these
alternative mechanisms, at least informally during the
engagement, we recommend formalizing them in the
form of an incident response plan (see appendix D for
some recommendations on how to build such a plan).

Authentication /
Access Controls

While most of the externally exposed functions found in
the smart contracts have no access controls, some
instances of protected functions correctly implement
access controls. However, the identity of those privileged
actors is sometimes unclear (e.g., who is the validator).

Additionally, when it comes to the “validator role,” the
smart contracts allow the validator allowlist to be
disabled when the validator becomes “AFK.” We
recommend expanding documentation around this
specific workflow, as the inline documentation, in its
current state, is not enough to reason about it.

We recommend that the Offchain Labs team lead a
documentation effort regarding who the privileged
actors are and what their roles in the system are.

Finally, on the off-chain side, our review focused on the
internal components related to edge management; we
did not have a chance to review external-facing
components.

Moderate

Complexity
Management

The fundamental idea behind the new protocol design,
which is outlined in the whitepaper, is relatively easy to
follow; additionally, the documentation that was
provided to us during each week of the review, coupled
with the way in which the edge-related contracts were
structured, made the system easier to understand and
enabled us to examine components with a relatively high
degree of isolation.

Moderate

Trail of Bits 16 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

On the other hand, the smart contracts that interact with
the rest of the Arbitrum technology (e.g., the ones can be
found in the rollup folder) have a much higher degree of
complexity, as they interact with other parts of the
system (e.g., the inbox contract). The documentation
available to us regarding these contracts was not as
thorough as the previous ones. We recommend that the
Offchain Labs team lead a documentation effort for
these particular contracts, especially regarding
assumptions around assertion creation and the
interactions with the rest of the system.

On the off-chain side, while the complexity was higher (as
expected of an off-chain system), the addition of a finite
state machine for edge tracking, along with the provided
support documentation, made the system easier to
understand, as this very clearly captured the challenge
protocol behavior. However, the off-chain system is still a
work in progress, and we have reviewed only certain
parts of it.

All in all, when taken in isolation, the system was
relatively easy to understand given the whitepaper
specification along with the chosen architecture and
supporting documentation. However, the parts of the
system that needed to interact with components of the
broader Arbitrum ecosystem have a higher degree of
complexity, and the assumptions around them are
unclear given that the available specification does not
touch on those interactions.

Cryptography
and Key
Management

No cryptography or key management related
components were in the scope of the review.

Not
Applicable

Decentralization The new protocol design does not impact the
decentralization characteristics of the Arbitrum
technology.

Not
Applicable

Documentation We were provided with the new challenge protocol
whitepaper which, although mostly in a work-in-progress
version, contained all the necessary information for us to

Moderate

Trail of Bits 17 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

understand the system along with the protocol
specification.

Additionally, each week, with the exception of the last
one, we were provided with thorough documentation
describing the part of the system we would be reviewing
and some of the assumptions. We recommend that the
Offchain Labs team formalize this documentation to
further help development and review.

Additionally, the documentation regarding the smart
contracts that manage assertion creation and interact
with other components of the Arbitrum technology
should be expanded.

Finally, there is a general lack of formal documentation
about competition between the actors that interact with
the system to advance the challenge and incentives for
those actors (e.g., whether honest actors will be
refunded for their work). The Offchain Labs team did
provide some informal feedback about the existence of
these incentives, but we recommend leading a formal
documentation effort in this direction.

Front-Running
Resistance

While we identified some instances of front-running risk
(TOB-ARBCH-17, TOB-ARBCH-29) in earlier versions of the
off-chain system, these were solved in subsequent
versions as the code matured. However, note that the
off-chain system is still a work in progress, and we were
able to cover only parts of it; it may warrant further
review as it is developed.

Additionally, on the on-chain side, there still exists risk of
griefing attacks through front-running (TOB-ARBCH-15);
however, the severity of these attacks solely depends on
some of the system’s assumptions regarding competition
between actors and how gas refunds may work for
honest actions, and these assumptions are still unclear.

Further
Investigation
Required

Low-Level
Manipulation

No low-level manipulation was identified. Not
Applicable

Trail of Bits 18 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Testing and
Verification

On the off-chain side, because we were reviewing code
that was still a work in progress, the tests were often not
fully complete, as highlighted in some of our findings
(TOB-ARBCH-20, TOB-ARBCH-19). However, these issues
were remediated as the review progressed.

Although the off-chain system is still a work in progress,
we recommend improving both unit and integration
tests. We also recommend using the new challenge
protocol in a testing environment and trying to create
different “abnormal” situations (e.g., front-running the
validator) to help identify unexpected behavior.

On the on-chain side, the available unit tests were very
thorough, testing both positive and negative cases.

Finally, the Offchain Labs team should consider
implementing automated testing techniques such as
fuzzing (there is some fuzzing already implemented for
the proof utilities).

Moderate

Trail of Bits 19 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Go Root function does not check for an empty
Merkle expansion

Data Validation Medium

2 Go Root function does not accept Merkle
expansion of MAX_LEVEL length

Data Validation High

3 NewHistoryCommitment does not validate height Data Validation Undetermined

4 Unused errors Undefined
Behavior

Informational

5 GeneratePrefixProof does not work in some cases Undefined
Behavior

High

6 Divergence in VerifyPrefixProof error handling Data Validation Informational

7 Missing validation in Golang’s
GeneratePrefixProof function

Data Validation Low

8 Substantial amount of code duplication Patching Informational

9 Consider implementing “sanity checks” as
assertions

Error Reporting Informational

10 Allow one-step proofs for length one
SmallStep-type unrivaled edges

Data Validation Informational

11 Incorrect state transition in edgeAtOneStepProof Undefined
Behavior

Medium

Trail of Bits 20 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

12 Lack of a terminal state Undefined
Behavior

Informational

13 Possibly unnecessary state transition Undefined
Behavior

Informational

14 Possible state transitions never happen Undefined
Behavior

Informational

15 Consider failing early to minimize the impact of
griefing attacks

Undefined
Behavior

Undetermined

16 Presumptive edge tracker never reaches
confirmation

Data Validation High

17 Front-running a validator can trigger a denial of
service

Data Validation High

18 *LevelZeroEdge snapshots are not updated Data Validation High

19 Claimed edge’s timer of a BigStep edge is counted
twice

Undefined
Behavior

Medium

20 Top level assertion timer not included in honest
path timer calculation

Data Validation High

21 Incorrect input parameter used to get the
unrivaled time of the honest top level assertion

Data Validation High

22 The earliestCreatedRivalBlockNumber function
can be optimized to reduce looping

Data Validation Informational

23 The localTimer function can be optimized to
reduce computation

Data Validation Informational

24 Remove honest nodes from the mutual ids map Data Validation Informational

Trail of Bits 21 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

25 Unsafe Uint64 operation for block number Undefined
Behavior

Low

26 Watcher could miss edges validated by time Data Validation Medium

27 Possible nil deref when getting a top level
assertion

Data Validation Low

28 Discrepancy between on and off-chain
confirmation timers

Data Validation Medium

29 Front-running certain validator operations leads
to honest edges not being tracked

Data Validation High

30 Consider adding an EdgeAwaitingConfirmation
state to avoid unnecessary computation

Data Validation Medium

31 Unclear code comment regarding the ability to
disable and enable staking

Undefined
Behavior

Informational

32 Validate the withdrawn amount by a staker is
greater than zero

Data Validation Low

33 Consider deleting the staker when their stake is
reduced to zero

Data Validation Low

34 Initial assertion’s status is not confirmed Undefined
Behavior

Informational

Trail of Bits 22 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Detailed Findings

1. Go Root function does not check for an empty Merkle expansion

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-1

Target: util/prefix-proofs/prefix_proofs.go

Description
The Go Root function does not check if the Merkle expansion is empty, but the Solidity
counterpart does (figure 1.1).

// The root of the subtree. A collision free commitment to the contents of the tree.
// The root of a tree is defined as the cumulative hashing of the roots of
// all its subtrees. Returns error for empty tree.
func Root(me []common.Hash) (common.Hash, error) {

if uint64(len(me)) >= MAX_LEVEL {
return common.Hash{}, ErrLevelTooHigh

}

var accum common.Hash
for i := 0; i < len(me); i++ {

...
}
return accum, nil

}

Figure 1.1: Snippet of the Root function in prefix_proofs.go#L110-L140

As shown in the figure above, the Root function will return the empty hash when the input
is an empty Merkle expansion; however, as shown below, its Solidity counterparty will
revert.

function root(bytes32[] memory me) internal pure returns (bytes32) {
require(me.length > 0, "Empty merkle expansion");
require(me.length <= MAX_LEVEL, "Merkle expansion too large");
...

Figure 1.2: Snippet of the root function in MerkleTreeLib.sol#L72-L102

Trail of Bits 23 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/util/prefix-proofs/prefix_proofs.go#L110-L140
https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/contracts/src/challengeV2/libraries/MerkleTreeLib.sol#L72-L102

Given the code comment highlighted in figure 1, the Go implementation is also expected to
return an error for an empty tree, which is not the case.

Exploit Scenario
The Challenge protocol is developed based on the assumption that both the Solidity and
Go implementations of the Merkle expansion’s Root function will throw an error whenever
an empty Merkle expansion is used as an input.

However, the Go implementation simply returns the empty hash. As a result, some actions
that should have been rejected early by the protocol will make it further into the challenge.

Recommendations
Short term, validate that the Merkle expansion is not empty in the Go Root function.

Long term, thoroughly document the divergent behavior and the expected behavior. The
codebase would benefit from the implementation of property testing by first creating a list
of properties that each function would need to enforce; using unit tests to validate those
properties; and, finally, expanding the fuzz tests using those properties as a baseline.

Trail of Bits 24 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

2. Go Root function does not accept Merkle expansion of MAX_LEVEL length

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-2

Target: util/prefix-proofs/prefix_proofs.go

Description
The Go Root function returns an error when the Merkle expansion’s length is equal to
MAX_LEVEL. However, the Solidity counterpart accepts that case. As a consequence, the
two behaviors differ.

func Root(me []common.Hash) (common.Hash, error) {
if uint64(len(me)) >= MAX_LEVEL {

return common.Hash{}, ErrLevelTooHigh
}

Figure 2.1: Snippet of the Root function in prefix_proofs.go#L110-L140

As shown in the figure above, attempts to calculate the root of a max-level Merkle
expansion will return an error in the Go implementation, whereas the Solidity
implementation, shown below, will proceed with the calculation of the root.

function root(bytes32[] memory me) internal pure returns (bytes32) {
require(me.length > 0, "Empty merkle expansion");
require(me.length <= MAX_LEVEL, "Merkle expansion too large");

Figure 2.2: Snippet of the root function in MerkleTreeLib.sol#L72-L102

As a result, the Go implementation will reject valid Merkle expansions.

Exploit Scenario
As a result of the divergent behavior, the challenge protocol rejects valid Merkle
expansions, potentially leading to unexpected behavior such as dishonest actors winning
the challenge.

Trail of Bits 25 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/util/prefix-proofs/prefix_proofs.go#L110-L140
https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/contracts/src/challengeV2/libraries/MerkleTreeLib.sol#L72-L102

Recommendations
Short term, in the Go Root function returns an error only if the Merkle expansion length is
greater than MAX_LEVEL not when it is equal.

Long term, thoroughly document the divergent behavior and the expected behavior. The
codebase would benefit from the implementation of property testing by first creating a list
of properties each function would need to enforce; using unit tests to validate those
properties; and finally expanding the fuzz tests using those properties as a baseline.

Trail of Bits 26 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

3. NewHistoryCommitment does not validate height

Severity: Undetermined Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-3

Target: util/commitments.go

Description
The NewHistoryCommitment function does not validate the height argument, as
specified by the documentation (figure 3.1).

In our implementation, we define the height of a history commitment as a 0-indexed
height from the origin, and the size to be the number of leaves the commitment is
for. That is, a history commitment of height 7 is committing to 8 leaves, i.e. [0,
7]

Figure 3.1: Documentation for History Commitments

As shown in the snippet of documentation in figure 3.1, the height should be equal to
leaves’ length subtracted by 1. However, the NewHistoryCommitment function (figure 3.2)
does not have any check on the height argument.

// NewHistoryCommitment constructs a commitment from a height and list of leaves.
func NewHistoryCommitment(

height uint64,
leaves []common.Hash,

) (HistoryCommitment, error) {
if len(leaves) == 0 {

return emptyCommit, errors.New("must commit to at least one leaf")
}
...

Figure 3.2: Snippet of the NewHistoryCommitment function in commitments.go#L53-L82

Additionally, a test (figure 3.3) sets the height to the length of the leaves (note that this is
the same scenario given in the documentation example), and this passes due to the
missing validation.

func TestHistoryCommitment_LeafProofs(t *testing.T) {
leaves := make([]common.Hash, 8)
for i := 0; i < len(leaves); i++ {

Trail of Bits 27 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://www.notion.so/arbitrum/History-Commitments-Proofs-6598fa4035e340f483b8d30670284bde?pvs=4#29f8ed7c25614491a161fd5eb3b08930
https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/util/commitments.go#L53-L82

leaves[i] = common.BytesToHash([]byte(fmt.Sprintf("%d", i)))
}
height := uint64(8)
history, err := NewHistoryCommitment(height, leaves)
...

Figure 3.3: Snippet of a test for the History Commitment in commitments_test.go#L12-L29

Recommendations
Short term, update the NewHistoryCommitment code to check that height ==
len(leaves) - 1; alternatively, consider removing the height parameter altogether and
simply inferring the height out of the length of the leaves (i.e., height = len(leaves) -
1).

Long term, thoroughly document the divergent behavior and the expected behavior. The
codebase would benefit from the implementation of property testing by first creating a list
of properties each function would need to enforce; using unit tests to validate those
properties; and finally expanding the fuzz tests using those properties as a baseline.

Trail of Bits 28 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/util/commitments_test.go#L12-L29

4. Unused errors

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBCH-4

Target: util/inclusion-proofs/inclusion_proofs.go

Description
The errors declared in figure 4.1 are unused. It is unclear if they are dead code or errors
that should be raised; however, they are never used due to missing checks.

var (
ErrInvalidLevel = errors.New("invalid level")
ErrInvalidHeight = errors.New("invalid height")
ErrMisaligned = errors.New("misaligned")
ErrIncorrectProof = errors.New("incorrect proof")
...

)

Figure 4.1: Errors declaration in inclusion_proofs.go#L11-L19

Recommendations
Short term, remove these errors if unused or apply the correct checks.

Long term, thoroughly document the different error types and when they should be used
and why; review the code to correct any divergences.

Trail of Bits 29 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/util/inclusion-proofs/inclusion_proofs.go#L11-L19

5. GeneratePrefixProof does not work in some cases

Severity: High Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBCH-5

Target: util/prefix-proofs/prefix_proofs.go

Description
The GeneratePrefixProof function incorrectly returns an error when yyy is 0 and zzz is
not 0.

In the case that the zzz != 0 branch is taken and MostSignificantBit is called with
yyy as an input, the function will return an ErrCannotBeZero error since yyy == 0.

func GeneratePrefixProof(
prefixHeight uint64,
prefixExpansion MerkleExpansion,
leaves []common.Hash,
rootFetcher MerkleExpansionRootFetcherFunc,

) ([]common.Hash, error) {
height := prefixHeight
postHeight := height + uint64(len(leaves))
proof, _ := prefixExpansion.Compact()
for height < postHeight {

...
mask := (uint64(1) << firstDiffBit) - 1
yyy := height & mask
zzz := postHeight & mask
if yyy != 0 {

...
} else if zzz != 0 {

highBit, err := MostSignificantBit(yyy)
if err != nil {

return nil, err
}

Figure 5.1: Snippet of the GeneratePrefixProof function in
prefix_proofs.go#L296-L351

func MostSignificantBit(x uint64) (uint64, error) {
if x == 0 {

return 0, ErrCannotBeZero

Trail of Bits 30 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/util/prefix-proofs/prefix_proofs.go#L296-L351

}
return uint64(63 - bits.LeadingZeros64(x)), nil

}

Figure 5.2: Snippet of the MostSignificantBit function in
prefix_proofs.go#L100-L105

Exploit Scenario
Bob calls GeneratePrefixProof with a series of arguments that make the function enter
the zzz != 0 branch, expecting the prefix proof returned. However, an error is raised, and
he cannot generate the proof.

Recommendations
Short term, call MostSignificantBit with zzz instead of yyy.

Long term, expand unit tests to achieve greater coverage of the codebase.

Trail of Bits 31 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/util/prefix-proofs/prefix_proofs.go#L100-L105

6. Divergence in VerifyPrefixProof error handling

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-6

Target: util/prefix-proofs/prefix_proofs.go

Description
The VerifyPrefixProof implementations diverge. Golang´s VerifyPrefixProof
function returns an ErrIndexOutOfRange when the function tries to access an index of
the prefixProof that is out of bounds; this is done to avoid a panic.

func VerifyPrefixProof(cfg *VerifyPrefixProofConfig) error {
[...]

proofIndex := uint64(0)
for size < cfg.PostSize {

level, err := MaximumAppendBetween(size, cfg.PostSize)
if err != nil {

return err
}
if proofIndex >= uint64(len(cfg.PrefixProof)) {

return ErrIndexOutOfRange
}
[...]
proofIndex++

}
[...]

}

Figure 7.1: VerifyPrefixProof function in prefix_proofs.go#L365-L440

However, its Solidity counterpart does not perform this check and, in the instance that an
out-of-bounds index is being accessed, the function will simply revert.

function verifyPrefixProof(
bytes32 preRoot,
uint256 preSize,
bytes32 postRoot,
uint256 postSize,

Trail of Bits 32 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

bytes32[] memory preExpansion,
bytes32[] memory proof

) internal pure {
[...]
while (size < postSize) {

uint256 level = maximumAppendBetween(size, postSize);

exp = appendCompleteSubTree(exp, level, proof[proofIndex]);

uint256 numLeaves = 1 << level;
size += numLeaves;
assert(size <= postSize);
proofIndex++;

}

// Check that the calculated root is equal to the provided post root
require(root(exp) == postRoot, "Post expansion root not equal post");

// ensure that we consumed the full proof
// this is just a safety check to guard against mistakenly supplied args
require(proofIndex == proof.length, "Incomplete proof usage");

}

Figure 7.2: verifyPrefixProof function in MerkleTreeLib.sol#L274-L311

Exploit Scenario
While at first glance both functions return an error, it would prove difficult for the
validators to determine what went wrong with the execution of the Solidity code because it
does not return an explicit error, as the Golang implementation does.

Recommendations
Short term, include the index check in the Solidity code and return the corresponding error.

Long term, thoroughly document the divergent behavior and the expected behavior. The
codebase would benefit from the implementation of property testing by first creating a list
of properties each function would need to enforce; using unit tests to validate those
properties; and finally expanding the fuzz tests using those properties as a baseline.

Trail of Bits 33 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/contracts/src/challengeV2/libraries/MerkleTreeLib.sol#L274-L311

7. Missing validation in Golang’s GeneratePrefixProof function

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-7

Target: util/prefix-proofs/prefix_proofs.go

Description
The Golang implementation of the GeneratePrefixProof function lacks data validation
for certain cases.

The GeneratePrefixProof function allows validators to generate a consistency proof
that some Merkle expansion is a prefix of another. The function will first perform some
checks and then generate the corresponding proof.

func GeneratePrefixProof(
prefixHeight uint64,
prefixExpansion MerkleExpansion,
leaves []common.Hash,
rootFetcher MerkleExpansionRootFetcherFunc,

) ([]common.Hash, error) {
height := prefixHeight
postHeight := height + uint64(len(leaves))
proof, _ := prefixExpansion.Compact()
for height < postHeight {

[...]
}

return proof, nil

Figure 7.1: GeneratePrefixProof function in prefix_proofs.go#L296-L351

Once a proof is generated, it can be verified through the VerifyPrefixProof function.

func VerifyPrefixProof(cfg *VerifyPrefixProofConfig) error {
if cfg.PreSize == 0 {

return errors.Wrap(ErrCannotBeZero, "presize was 0")
}
root, rootErr := Root(cfg.PreExpansion)
if rootErr != nil {

return errors.Wrap(rootErr, "pre expansion root error")

Trail of Bits 34 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/util/prefix-proofs/prefix_proofs.go#L296-L351

}
if root != cfg.PreRoot {

return errors.Wrap(ErrRootMismatch, "pre expansion root mismatch")
}
if cfg.PreSize != TreeSize(cfg.PreExpansion) {

return errors.Wrap(ErrTreeSize, "pre expansion tree size")
}
if cfg.PreSize >= cfg.PostSize {

return errors.Wrapf(
ErrStartNotLessThanEnd,
"presize %d >= postsize %d",
cfg.PreSize,
cfg.PostSize,

)
}
[...]

}

Figure 7.2: VerifyPrefixProof function in prefix_proofs.go#L365-L440

The VerifyPrefixProof function will perform additional checks on the proof, such as
checking whether the size of the prefix is zero or not. However, these checks could also be
performed by the GeneratePrefixProof function to avoid the creation of proofs that are
outright invalid once verified.

Finally, comparing the Golang implementation to the Solidity implementation found in the
test folder shows that the Solidity version does explicitly include these checks, which
indicates a divergence in the implementations of the GeneratePrefixProof function.

function generatePrefixProof(uint256 preSize, bytes32[] memory newLeaves)
internal
pure
returns (bytes32[] memory)

{
require(preSize > 0, "Pre-size cannot be 0");
require(newLeaves.length > 0, "No new leaves added");
[...]

}

Figure 7.3: generatePrefixProof function in Utils.sol#L66-L99

Exploit Scenario
The creation of proofs that cannot be verified is allowed. This hides implementation bugs,
as validators running the code will see their proofs being rejected by the
VerifyPrefixProof instead of the GeneratePrefixProof function.

Trail of Bits 35 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/util/prefix-proofs/prefix_proofs.go#L365-L440
https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/contracts/test/challengeV2/Utils.sol#L66-L99

Recommendations
Short term, include the additional checks in the GeneratePrefixProof.

Long term, thoroughly document the divergent behavior and the expected behavior. The
codebase would benefit from the implementation of property testing by first creating a list
of properties each function would need to enforce; using unit tests to validate those
properties; and finally expanding the fuzz tests using those properties as a baseline.

Trail of Bits 36 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

8. Substantial amount of code duplication

Severity: Informational Difficulty: Low

Type: Patching Finding ID: TOB-ARBCH-8

Target:
contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol

Description
Code duplication exists across the EdgeChallengeManagerLib contract implementation,
which can result in incomplete fixes and inconsistent behavior (e.g., because the code is
modified in one location but not in all).

The figure below shows an instance of duplicated code that leads to duplicate checks being
performed. However, note that code duplication is present in other areas of the code; we
have documented some of these instances in appendix C.

function hasRival(EdgeStore storage store, bytes32 edgeId) internal view returns
(bool) {

require(store.edges[edgeId].exists(), "Edge does not exist");

// rivals have the same mutual id
bytes32 mutualId = store.edges[edgeId].mutualId();
bytes32 firstRival = store.firstRivals[mutualId];
// Sanity check: it should never be possible to create an edge without having an

entry in firstRivals
require(firstRival != 0, "Empty first rival");

// can only have no rival if the firstRival is the UNRIVALED magic hash
return hasRivalVal(firstRival);

}

function hasLengthOneRival(EdgeStore storage store, bytes32 edgeId) internal view
returns (bool) {

require(store.edges[edgeId].exists(), "Edge does not exist");

// must be length 1 and have rivals - all rivals have the same length
return (store.edges[edgeId].length() == 1 && hasRival(store, edgeId));

}

Trail of Bits 37 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Figure 8.1: hasRival and hasLengthOneRival functions in
EdgeChallengeManagerLib.sol#L153-L174

Exploit Scenario
A new feature is introduced into the protocol that requires the modification of already
existing code. Because the code that requires modification is duplicated across different
places in the codebase, the developer does not update all instances of the code, leading to
the introduction of a bug.

Recommendations
Short term, consider refactoring the code to remove the instances of duplicated code
whenever possible. Note that this will have to be performed on a case-by-case basis
because code duplication may be unavoidable in some instances, as it will depend on how
the library is used by higher-level implementations.

Long term, adopt code practices that discourage code duplication to help prevent this
problem from recurring.

Trail of Bits 38 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55262291fcafdf817ff03cf4b2848b35e296584/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L153-L174

9. Consider implementing “sanity checks” as assertions

Severity: Informational Difficulty: Low

Type: Error Reporting Finding ID: TOB-ARBCH-9

Target:
contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol

Description
The EdgeChallengeManagerLib contract contains several instances of code that perform
“sanity checks” using require statements. These require statements check invariants
(i.e., conditions that should always be true or false). However, as shown in the Solidity
documentation, invariants are best checked using assertions.

Below we can see an example of a “sanity check” that can be found in the code.

function hasRival(EdgeStore storage store, bytes32 edgeId) internal view returns
(bool) {

require(store.edges[edgeId].exists(), "Edge does not exist");

// rivals have the same mutual id
bytes32 mutualId = store.edges[edgeId].mutualId();
bytes32 firstRival = store.firstRivals[mutualId];
// Sanity check: it should never be possible to create an edge without having an

entry in firstRivals
require(firstRival != 0, "Empty first rival");

// can only have no rival if the firstRival is the UNRIVALED magic hash
return hasRivalVal(firstRival);

}

Figure 9.1: Invariant check in hasRival function in
EdgeChallengeManagerLib.sol#L153-L164

Recommendations
Short term, consider replacing the require statements from the “sanity checks” with
assertions.

Trail of Bits 39 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://docs.soliditylang.org/en/develop/control-structures.html#panic-via-assert-and-error-via-require
https://docs.soliditylang.org/en/develop/control-structures.html#panic-via-assert-and-error-via-require
https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55262291fcafdf817ff03cf4b2848b35e296584/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L153-L164

10. Allow one-step proofs for length one SmallStep-type unrivaled edges

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-10

Target:
contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol

Description
The current implementation of the EdgeChallengeManagerLib contract allows only
one-step proofs for rivaled length-one SmallStep-type edges.

The confirmEdgeByOneStepProof function allows the caller to confirm an edge through
a proof under some conditions. One of those conditions is that the edge to be confirmed is
of length one and has a rival.

function confirmEdgeByOneStepProof(
EdgeStore storage store,
bytes32 edgeId,
IOneStepProofEntry oneStepProofEntry,
OneStepData memory oneStepData,
bytes32[] memory beforeHistoryInclusionProof,
bytes32[] memory afterHistoryInclusionProof

) internal {
require(store.edges[edgeId].exists(), "Edge does not exist");
require(store.edges[edgeId].status == EdgeStatus.Pending, "Edge not pending");

// edge must have rivals, be length one and be of type SmallStep
require(store.edges[edgeId].eType == EdgeType.SmallStep, "Edge is not a small

step");
require(hasLengthOneRival(store, edgeId), "Edge does not have single step

rival");

[...]
}

Figure 10.1: confirmEdgeByOneStepProof function in
EdgeChallengeManagerLib.sol#L430-L472

Trail of Bits 40 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55262291fcafdf817ff03cf4b2848b35e296584/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L430-L472

However, it is not possible to one-step proof an dishonest edge; therefore, there is no need
to wait until the edge has a rival for it to become “one-step provable.” In fact, because
dishonest actors cannot one-step proof edges, they may choose never to create a rival,
thereby removing the ability for the honest actor to use one-step proofs altogether.

Exploit Scenario
Because dishonest actors know they cannot one-step proof a dishonest edge, they choose
to never create a rival, requiring the honest actor to always wait to confirm length-one
edges by time. Note that this can happen regardless at higher-length edges (i.e., by
dishonest actors choosing not to bisect), but in the current implementation, bisecting to
create a length-one edge would be meaningless without a length-one rival.

Recommendations
Short term, consider allowing length-one SmallStep-type edges to be confirmed when they
have no rivals.

Trail of Bits 41 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

11. Incorrect state transition in edgeAtOneStepProof

Severity: Medium Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBCH-11

Target: validator/edge_tracker.go

Description
In the current implementation of the state machine, an edge that is successfully one-step
proven should change its state to confirmed (EdgeConfirming state in this case).
However, in the current implementation, the act function will trigger an
edgeAwaitSubchallangeResolution event. This will change the state to
EdgeAwaitingSubchallenge—a state that is impossible to confirm in the current
implementation and from which it is impossible to exit.

// Edge is at a one-step-proof in a small-step challenge.
case edgeAtOneStepProof:

if err := et.submitOneStepProof(ctx); err != nil {
return errors.Wrap(err, "could not submit one step proof")

}
return et.fsm.Do(edgeAwaitSubchallengeResolution{})

[...]

Figure 11.1: act function in validator/edge_tracker.go#L69-L74

Note that this issue stems from the fact that this code is in the early stages of development.

Recommendations
Short term, trigger the correct event so that the state machine transitions to the
edgeConfirming state.

Long term, thoroughly document the expected state transitions that should happen and
the conditions under which they should be triggered.

Trail of Bits 42 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/59003322f6527ada1b2ef6ee1d6527fc8e01738b/validator/edge_tracker.go#L69-L74

12. Lack of a terminal state

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBCH-12

Target: validator/edge_tracker_transition_table.go

Description
The state machine lacks a terminal state (i.e., an state that marks a “successful flow” or an
state that is “the output” of the state machine). Intuitively, this terminal state should be the
one in which an edge is confirmed. However, the closest state in the current iteration is
edgeConfirming which, by virtue of its name, and given that state transitions from itself
to itself (i.e., loops) exist, this state seems more of a “transitory state” before confirmation
of an edge. This reinforces the idea that there should exist another state (e.g.,
edgeConfirmed) that is the actual terminal state of the machine and that indicates that an
edge has been successfully confirmed.

// Finishing.
{

Typ: edgeConfirm{},
From: []edgeTrackerState{edgeAtOneStepProof, edgeConfirming},
To: edgeConfirming,

},

Figure 12.1: newEdgeTrackerFsm function in
validator/edge_tracker_transition_table.go#L75-L80

Note that there are multiple ways to confirm edges (e.g., by time, by claim, by proof), so
multiple state transitions could end up in a confirmed state).

Recommendations
Short term, consider the inclusion of a terminal state edgeConfirmed that represents the
“output” of the state machine.

Long term, thoroughly document the expected state transitions that should happen and
the conditions under which they should be triggered.

Trail of Bits 43 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/59003322f6527ada1b2ef6ee1d6527fc8e01738b/validator/edge_tracker_transition_table.go#L75-L80

13. Possibly unnecessary state transition

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBCH-13

Target: validator/edge_tracker_transition_table.go,
validator/edge_tracker.go

Description
When an edge in the edgePresumptive state has a rival, its state is changed to
edgeStarted.

case edgePresumptive:
hasRival, err := et.edge.HasRival(ctx)
if err != nil {

return errors.Wrap(err, "could not check if presumptive")
}
if hasRival {

return et.fsm.Do(edgeBackToStart{})
}
return et.fsm.Do(edgeMarkPresumptive{})

[...]

Figure 13.1: act function in validator/edge_tracker.go#L120-L129

However, this seems unnecessary and possibly incomplete. If the edge has a rival, it could
be bisected; if the edge is of length one and SmallType, it could be one-step proven.
Additionally, other state transitions could be implemented; for example, if the edge is of
length one, is not of SmallType, and has a rival, then it could transition to the
edgeAtOneStepFork state.

Note that an edge that has a rival should not remain in the presumptive state, so, for
correctness, it may be necessary to transition the edge state to a different state, even if the
bisection fails.

Finally, the conditions to be checked should be based on what conditions the previous
state checks. For example, since length-one SmallType edges can be one-step proven, it
may not make sense to check for those conditions in the edgePresumptive state if the

Trail of Bits 44 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/59003322f6527ada1b2ef6ee1d6527fc8e01738b/validator/edge_tracker.go#L120-L129

edgeStarted state transitions edges under those conditions to the edgeAtOneStepProof
state.

Recommendations
Short term, whenever the edge has a rival and/or is of length one or whenever it can be
one-step provable, consider transitioning the state of the edge from edgePresumptive to
edgeBisecting, edgeAtOneStepFork, or edgeAtOneStepProof.

Long term, thoroughly document the expected state transitions that should happen and
the conditions under which they should be triggered.

Trail of Bits 45 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

14. Possible state transitions never happen

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBCH-13

Target: validator/edge_tracker_transition_table.go,
validator/edge_tracker.go

Description
The tracker transition table defines the possible state transitions; however, some of them
never happen in the implementation of the edge tracker in the act function.

The following state transitions are defined in the transition table but never happen:

● from edgeAtOneStepFork to edgeStarted
● from edgeBisecting to edgePresumptive
● from edgeAtOneStepProof to edgeAtOneStepProof
● from edgeAtOneStepFork to edgeAwaitingSubchallenge

It is unclear if they should not be possible and should be removed from the transition table
or if they are not implemented yet.

Recommendations
Short term, remove the state transitions from the transition table or implement them.

Long term, thoroughly document the expected state transitions that should happen and
the conditions under which they should be triggered.

Trail of Bits 46 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

15. Consider failing early to minimize the impact of griefing attacks

Severity: Undetermined Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBCH-15

Target: EdgeChallengerManager.sol, EdgeChallengeManagerLib.sol

Description
Dishonest actors may look to grief honest ones by front-running them and forcing them to
spend gas on failing transactions. Additionally, depending on whether or not gas is
refunded for completing honest actions, dishonest actors may be heavily incentivized to do
so.

Certain actions performed by the challenge contracts are computationally heavy and
require multiple checks to be passed before they can be successfully triggered. However, in
certain instances these checks are done at the very end of the function logic, which means
that the sender may have already spent a substantial amount of gas before arriving at that
check—something that a dishonest actor can capitalize on.

An example of such a function is createLayerZeroEdge. As shown in the figures below,
this function requires multiple checks, proof verifications, calls to external contracts,
reading from and writing to storage, etc.:

function createLayerZeroEdge(CreateEdgeArgs calldata args, bytes calldata
prefixProof, bytes calldata proof)

external
payable
returns (bytes32)

{
AssertionReferenceData memory ard;
if (args.edgeType == EdgeType.Block) {

bytes32 predecessorId = assertionChain.getPredecessorId(args.claimId);
ard = AssertionReferenceData(

args.claimId,
predecessorId,
assertionChain.isPending(args.claimId),
assertionChain.hasSibling(args.claimId),
assertionChain.getStateHash(predecessorId),
assertionChain.getStateHash(args.claimId)

Trail of Bits 47 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

);
}
uint256 expectedEndHeight = getLayerZeroEndHeight(args.edgeType);
EdgeAddedData memory edgeAdded =

store.createLayerZeroEdge(args, ard, oneStepProofEntry, expectedEndHeight,
prefixProof, proof);

[...]
}

Figure 15.1: createLayerZeroEdge function in EdgeChallengeManager.sol#L216-L387

function createLayerZeroEdge(
EdgeStore storage store,
CreateEdgeArgs calldata args,
AssertionReferenceData memory ard,
IOneStepProofEntry oneStepProofEntry,
uint256 expectedEndHeight,
bytes calldata prefixProof,
bytes calldata proof

) internal returns (EdgeAddedData memory) {
// each edge type requires some specific checks
(ProofData memory proofData, bytes32 originId) =

layerZeroTypeSpecifcChecks(store, args, ard, oneStepProofEntry, proof);
// all edge types share some common checks
(bytes32 startHistoryRoot) = layerZeroCommonChecks(proofData, args,

expectedEndHeight, prefixProof);
// we only wrap the struct creation in a function as doing so with exceeds the

stack limit
ChallengeEdge memory ce = toLayerZeroEdge(originId, startHistoryRoot, args);
return add(store, ce);

}

Figure 15.2: createLayerZeroEdge function in
EdgeChallengeManagerLib.sol#L360-L377

However, after all of these computationally heavy actions have been performed and the
checks passed, a very important check remains: whether the edge that is being created
already exists. A dishonest actor could front-run honest actors and force them to waste gas
that will not be refunded.

function add(EdgeStore storage store, ChallengeEdge memory edge) internal returns
(EdgeAddedData memory) {

bytes32 eId = edge.idMem();
// add the edge if it doesnt exist already
require(!store.edges[eId].exists(), "Edge already exists");

Trail of Bits 48 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/EdgeChallengeManager.sol#L286-L317
https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L360-L377

[...]
}

Figure 15.3: add function in ChallengeEdgeLib.sol#L228-L231

Note that it is not possible to accurately measure the impact of this issue at the current
state of development, as we do not have information regarding gas refunds for honest
actions or how the competition between honest actors works (as not only dishonest actors
may choose to front-run).

Recommendations
Short term, whenever possible, consider failing early to reduce the impact of griefing
attacks.

Long term, thoroughly document the assumptions regarding incentives for honest actors
and how gas refunds may work (if they exist). Using that as a baseline, consider
implementing additional safeguards to reduce the impact of griefing attacks like the ones
described in this issue.

Trail of Bits 49 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/libraries/ChallengeEdgeLib.sol#L228-L231

16. Presumptive edge tracker never reaches confirmation

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-16

Target: validator/edge_tracker.go

Description
An edge tracker in the presumptive state for which a rival is never created will be
indefinitely stuck in the same state and the validator will be unable to advance the
challenge.

As shown in the figure below, whenever an edge reaches the presumptive state the
validator will query the challenge contract to check if any rivals have been created. If any
rivals exist, then the edge state will be changed to the edgeStarted state and the
challenge will continue its expected course.

// Edge is presumptive, should do nothing until it loses ps status.
case edgePresumptive:

hasRival, err := et.edge.HasRival(ctx)
if err != nil {

return errors.Wrap(err, "could not check if presumptive")
}
if hasRival {

return et.fsm.Do(edgeBackToStart{})
}
return et.fsm.Do(edgeMarkPresumptive{})

[...]

Figure 16.1: act function in validator/edge_tracker.go#L124-L132

However, if no rival is ever created, the edge will never leave the presumptive state and the
validator will remain be stuck unable to advance the challenge.

Note that this behavior does not allow the dishonest party to win, as no rival has been
created for the edge; however, it will make the validator unable to progress the challenge.

Trail of Bits 50 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/validator/edge_tracker.go#L124-L132

Exploit Scenario
An edge reaches the presumptive state, but a rival is never created. As a result, the
validator will remain stuck in the challenge, unable to confirm it.

Recommendations
Short term, as part of its logic the edge tracker should check whether an edge in the
presumptive state can be confirmed by time.

Long term, thoroughly document the expected state transitions that should happen and
the conditions under which they should be triggered.

Trail of Bits 51 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

17. Front-running a validator can trigger a denial of service

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-17

Target: validator/edge_tracker.go

Description
A lack of proper validation of on-chain data allows, in certain instances, dishonest actors to
trigger a denial of service of the validator.

The validator code is responsible for advancing the challenge; this is done through a finite
state machine that represents the possible states a given edge can be in during a challenge,
and that mirrors the state of the challenge contract. Each state will use different heuristics
to determine the next on-chain and off-chain action to trigger; for example, an edge with
no rivals will be moved to the presumptive state in which it will await a rival or check
whether it can be confirmed.

However, in certain instances, the validator fails to accurately determine what the on-chain
state is and, because of that, will fail to trigger the right action or state transition. This
causes the validator code to become stuck on the same state or to jump endlessly between
states.

The figures below show an example of the aforementioned behavior: whenever a validator
tries to bisect an edge that has already been bisected on-chain (something that can be
achieved by simply front-running a validator’s bisection transaction), the validator will be
unable to determine that the bisection has already occurred and will be stuck jumping
between the edgeBisecting and edgeStarted states, wasting gas and being unable to
advance the challenge.

// Edge should bisect.
case edgeBisecting:

lowerChild, upperChild, err := et.bisect(ctx)
if err != nil {

if errors.Is(err, solimpl.ErrAlreadyExists) {
return et.fsm.Do(edgeBackToStart{})

}
log.WithError(err).WithFields(fields).Error("Could not bisect")

Trail of Bits 52 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

return et.fsm.Do(edgeBackToStart{})
}

[...]

Figure 17.1: act function in validator/edge_tracker.go#L89-L122

As shown in the figure above, if the bisection fails, the edge tracker will trigger an
edgeBackToStart event that will move the state of the edge back to the edgeStarted
state. Additionally, as shown below, the edgeStarted state will also fail to determine that
the edge was already bisected and will move the edge back to the edgeBisecting state
again.

// Start state.
case edgeStarted:

canOsp, err := canOneStepProve(et.edge)
if err != nil {

return errors.Wrap(err, "could not check if edge can be one step
proven")

}
if canOsp {

return et.fsm.Do(edgeHandleOneStepProof{})
}
hasRival, err := et.edge.HasRival(ctx)
if err != nil {

return errors.Wrap(err, "could not check presumptive")
}
if !hasRival {

return et.fsm.Do(edgeMarkPresumptive{})
}
atOneStepFork, err := et.edge.HasLengthOneRival(ctx)
if err != nil {

return errors.Wrap(err, "could not check if edge is at one step fork")
}
if atOneStepFork {

return et.fsm.Do(edgeHandleOneStepFork{})
}
return et.fsm.Do(edgeBisect{})

[...]

Figure 17.2: act function in validator/edge_tracker.go#L32-L58

Ultimately, this means that the validator will be spending gas indefinitely and will be unable
to advance the challenge. In extreme cases, this could allow the dishonest actor to win the
challenge.

Trail of Bits 53 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/validator/edge_tracker.go#L89-L122
https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/validator/edge_tracker.go#L36-L58

Note that the edgeBisecting state is not the only state in which this “looping” behavior
can be seen. Another is the edgeAtOneStepProof state, which, in the case that the edge
has already been confirmed, will remain stuck, unable to finish the challenge.

// Edge is at a one-step-proof in a small-step challenge.
case edgeAtOneStepProof:

if err := et.submitOneStepProof(ctx); err != nil {
return errors.Wrap(err, "could not submit one step proof")

}
return et.fsm.Do(edgeConfirm{})

[...]

Figure 17.3: act function in validator/edge_tracker.go#L73-L77

Exploit Scenario
A new challenge starts in which Alice and Eve (an honest and dishonest actor, respectively)
are competing.

The challenge proceeds as normal and they are able to go deep into the sub-challenges. At
some point, Alice is meant to trigger a bisection; however, Eve, knowing that she can trigger
a denial of service on Alice’s validator node, front-runs her bisection by copying Alice’s
calldata. This triggers the bisection but leaves Alice’s node stuck spending gas and unable
to compete with Eve, who is able to bisect again and create a presumptive edge.

If Alice is unable to fix her node in time then Eve will be able to win the challenge.

Recommendations
Short term, identify cases of the aforementioned behavior in the different states and
include additional checks in them to help identify instances in which an action cannot be
triggered because it has already been triggered on-chain. This may include bisections that
have already happened on-chain and confirmations that have already happened.

Once the behavior has been identified, trigger the correct actions to follow. For example, if
an edge has already been confirmed, change its state to confirmed. If an edge has already
been bisected, then create new trackers for its children.

Long term, thoroughly document the expected state transitions that should happen and
the conditions under which they should be triggered; additionally, document how to
identify whether a behavior has already been triggered on-chain (for example, by
evaluating the revert reason of the transaction).

Trail of Bits 54 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/validator/edge_tracker.go#L73-L77

18. *LevelZeroEdge snapshots are not updated

Severity: High Difficulty: Medium

Type: Data Validation Finding ID: TOB-ARBCH-18

Target: validator/challenge-tree/tree.go

Description
Snapshots of honest level-zero edges in the HonestChallengeTree struct are not
refreshed in RefershEdgesFromChain, where only the edges field is updated. Since the
lower and upper child of a snapshot edge can change, it is possible that incorrect children
will be used in findAncestorInChallenge.

type HonestChallengeTree struct {
edges *threadsafe.Map[protocol.EdgeId,

protocol.EdgeSnapshot]
mutualIds *threadsafe.Map[protocol.MutualId,

*threadsafe.Map[protocol.EdgeId, creationTime]]
topLevelAssertionId protocol.AssertionId
honestBlockChalLevelZeroEdge util.Option[protocol.EdgeSnapshot]
honestBigStepLevelZeroEdges *threadsafe.Slice[protocol.EdgeSnapshot]
honestSmallStepLevelZeroEdges *threadsafe.Slice[protocol.EdgeSnapshot]
metadataReader MetadataReader
histChecker HistoryChecker
edgeReader EdgeReader

}

Figure 18.1: The HonestChallengeTree struct in tree.go#L52-L62

The RefreshEdgesFromChain function re-fetches each edge currently in the edges field,
but it does not refetch the *LevelZeroEdge/s fields.

// RefreshEdgesFromChain refreshes all edge snapshots from the chain.
func (ht *HonestChallengeTree) RefreshEdgesFromChain(ctx context.Context) error {

edgeIds := make([]protocol.EdgeId, 0, ht.edges.NumItems())
if err := ht.edges.ForEach(func(id protocol.EdgeId, _ protocol.EdgeSnapshot)

error {
edgeIds = append(edgeIds, id)
return nil

}); err != nil {
return err

Trail of Bits 55 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/57f67e2f57daa1876c080678aa07b8d8e9c51aee/validator/challenge-tree/tree.go#L52-L62

}
snapshots := make([]protocol.EdgeSnapshot, len(edgeIds))
for i, edgeId := range edgeIds {

edge, err := ht.edgeReader.GetEdge(ctx, edgeId)
if err != nil {

return err
}
snapshots[i] = edge

}
for i, edgeId := range edgeIds {

ht.edges.Put(edgeId, snapshots[i])
}
return nil

}

Figure 18.2: RefreshEdgesFromChain function in tree.go#L65-L85

Exploit Scenario
The lower child of the honestBlockChalLevelZeroEdge changes, but it is not updated in
RefreshEdgesFromChain. Additionally, when used as a starting point in
findAncestorsInChallenge, it leads to an incorrect tree of edges, returning a wrong
result.

Recommendations
Short term, update the honestBlockChalLevelZeroEdge,
honestBigStepLevelZeroEdges, and honestSmallStepLevelZeroEdges fields in
RefreshEdgesFromChain.

Long term, improve the testing suite by simulating a scenario in which the children of an
honest-level zero edge are updated and verify the correct behavior.

Trail of Bits 56 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/57f67e2f57daa1876c080678aa07b8d8e9c51aee/validator/challenge-tree/tree.go#L65-L85

19. Claimed edge’s timer of a BigStep edge is counted twice

Severity: Medium Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBCH-19

Target: validator/challenge-tree/ancestors.go

Description
The claimed edge’s timer of a BigStep edge is counted twice in the HonestPathTimer
function.

case protocol.BigStepChallengeEdge:
...

// Next, we go up to the block challenge level by getting the edge the
big step

// level zero edge claims as its claim id.
claimedEdge, err := ht.getClaimedEdge(bigStepLevelZero)
if err != nil {

return 0, ancestry, err
}
claimedEdgeTimer, err := ht.localTimer(claimedEdge, blockNumber)
if err != nil {

return 0, ancestry, err
}
pathTimer += PathTimer(claimedEdgeTimer)

// We compute the block ancestry from there.
start = honestLevelZero
searchFor = claimedEdge
blockChalTimer, blockChalAncestry, err :=

ht.findAncestorsInChallenge(start, searchFor, blockNumber)
if err != nil {

return 0, ancestry, err
}
pathTimer += blockChalTimer

Figure 19.1: Snippet of the HonestPathTimer function in ancestors.go#L104-L123

First, the function gets the claimed edge by the BigStep edge and its timer is added to
pathTimer. Next, the claimed edge is used as an argument for the
findAncestorsInChallenge as the edge to search for. However,

Trail of Bits 57 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/56ad6d01077b963042ef6a5b7d1807ba9296565f/validator/challenge-tree/ancestors.go#L104-L123

findAncestorsInChallenge also adds the timer of the searched edge to the returned
blockChalTimer, so the timer is added twice.

Exploit Scenario
The validator incorrectly tracks the cumulative unrivaled time of the honest path, causing it
to “think” that it can confirm the edge by time. As a result, the validator will try to call the
challenge contract to start the confirmation process. However, this will fail and result in gas
expenditure.

Recommendations
Short term, remove the addition of the claimed edge timer.

Long term, improve unit testing to verify the expected behavior of the HonestPathTimer
function.

Trail of Bits 58 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

20. Top level assertion timer not included in honest path timer calculation

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-20

Target: validator/challenge-tree/path_timer.go

Description
Whenever the cumulative unrivaled timer of all honest edges is calculated, the validator
does not account for the unrivaled timer of the honest top-level assertion.

The validator periodically updates the cumulative unrivaled timer of all edges in the honest
path using the UpdateCumulativePathTimers function.

func (ht *HonestChallengeTree) UpdateCumulativePathTimers(blockNum uint64) error {
if ht.honestBlockChalLevelZeroEdge.IsNone() {

return nil
}
blockEdge := ht.honestBlockChalLevelZeroEdge.Unwrap()
return ht.recursiveTimersUpdate(

0, // Total honest path timer accumulator, starting at 0.
blockEdge,
blockNum,

)
}

Figure 20.1: UpdateCumulativePathTimers function in
validator/challenge-tree/path_timer.go#L20-L30

This function recursively navigates the honest path of the tree of edges from the honest
block level-zero edge down to the lowest edge, calculates the cumulative timer, and
updates the edges.

// Recursively updates the path timers of all honest edges tracked in the challenge
tree.
func (ht *HonestChallengeTree) recursiveTimersUpdate(

timerAcc uint64,
curr protocol.EdgeSnapshot,
blockNum uint64,

) error {

Trail of Bits 59 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/193cc8cb6630e26941e6abcad30aafe0a2fe619b/validator/challenge-tree/path_timer.go#L20-L30

timer, err := ht.localTimer(curr, blockNum)
if err != nil {

return err
}
if !hasChildren(curr) {

// If the edge has length 1, we then perform a few special checks.
if edgeLength(curr) == 1 {

isRivaled := ht.isRivaled(curr)
// In case the edge is a small step challenge of length 1, or is

not rivaled we simply return.
if curr.GetType() == protocol.SmallStepChallengeEdge ||

!isRivaled {
ht.cumulativeHonestPathTimers.Put(curr.Id(),

timer+timerAcc)
return nil

}
[...]

Figure 20.2: recursiveTimersUpdate function in
validator/challenge-tree/path_timer.go#L33-L108

However, as shown in the above snippets, the calculation of the cumulative timer starts at
the level-zero block edge and does not account for unrivaled time of the top-level honest
assertion, which is incorrect.

Exploit Scenario
Because the validator does not account for the unrivaled timer of the top-level honest
assertion when calculating the cumulative unrivaled time of the honest edge path, a
dishonest actor could potentially win the challenge.

Recommendations
Short term, add the unrivaled timer of the honest top-level assertion to the cumulative
unrivaled time calculation.

Long term, improve unit testing to verify the expected behavior of the function.

Trail of Bits 60 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/193cc8cb6630e26941e6abcad30aafe0a2fe619b/validator/challenge-tree/path_timer.go#L33-L108

21. Incorrect input parameter used to get the unrivaled time of the honest top
level assertion

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-21

Target: validator/challenge-tree/ancestors.go

Description
When the HonestPathTimer function queries the unrivaled time of the honest top-level
assertion, it does so by inputting the ID of an edge and not the ID of the assertion itself.

The HonestPathTimer function calculates the cumulative unrivaled time of the honest
edge path. To do so, it navigates the edge tree starting from the honest level-zero block
edge down to the lowest honest edge, calculating the cumulative unrivaled time.

Additionally, it adds the unrivaled time of the top-level honest assertion to the calculation.

func (ht *HonestChallengeTree) HonestPathTimer(
ctx context.Context,
queryingFor protocol.EdgeId,
blockNumber uint64,

) (PathTimer, HonestAncestors, error) {
wantedEdge, ok := ht.edges.TryGet(queryingFor)
if !ok {

return 0, nil, errNotFound(queryingFor)
}
if ht.honestBlockChalLevelZeroEdge.IsNone() {

return 0, nil, ErrNoHonestTopLevelEdge
}
honestLevelZero := ht.honestBlockChalLevelZeroEdge.Unwrap()

// Get assertion's unrivaled time and use that as the start
// of our path timer.
timer, err := ht.metadataReader.AssertionUnrivaledTime(ctx, queryingFor)

[...]

Figure 21.1: HonestPathTimer function in validator/challenger-tree/ancestors.go#L45-L57

Trail of Bits 61 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/56ad6d01077b963042ef6a5b7d1807ba9296565f/validator/challenge-tree/ancestors.go#L45-L57

However, as shown in the snippet above, the AssertionUnrivaledTime function is being
called with queryingFor as a parameter (i.e., the ID of an edge). This is incorrect; it should
instead take the ID of the honest top-level assertion.

Note that the AssertionUnrivaledTime function is currently just an interface and is not
implemented.

Exploit Scenario
When the HonestParthTimer function is executed, the call to AssertionUnrivaledTime
returns an error because the ID that it expects does not correspond to a top-level
assertion.

Note that this exploit scenario is purely hypothetical, as the function is not currently
implemented.

Recommendations
Short term, input the ID of the honest top-level assertion to the
AssertionUnrivaledTime function.

Long term, improve unit testing to verify the expected behavior of the function.

Trail of Bits 62 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

22. The earliestCreatedRivalBlockNumber function can be optimized to
reduce looping

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-22

Target: validator/challenge-tree/path_timer.go

Description
The earliestCreatedRivalBlockNumber function can be optimized to avoid an
additional loop.

Given an edge, the earliestCreatedRivalBlockNumber function returns the creation
block of the earliest created rival or none if it has no rival.

The function calculates the earliest creation block by first iterating over the rivals of the
edge, creating a slice of their creation blocks, and then calling the util.Min function over
the slice.

func (ht *HonestChallengeTree) earliestCreatedRivalBlockNumber(e
protocol.ReadOnlyEdge) util.Option[uint64] {

rivals := ht.rivalsWithCreationTimes(e)
creationBlocks := make([]uint64, len(rivals))
for i, r := range rivals {

creationBlocks[i] = uint64(r.createdAtBlock)
}
return util.Min(creationBlocks)

}

Figure 22.1: earliesCreatedRivalBlockNumber function in
validator/challenger-tree/path_timer.go#L37-L44

As shown below, The Min function will iterate over the slice calculating the minimum.

func Min[T Unsigned](items []T) Option[T] {
if len(items) == 0 {

return None[T]()
}
var m T
if len(items) > 0 {

Trail of Bits 63 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/28770065aeaeba40f72f8ef8158e9dcf72aa6678/validator/challenge-tree/path_timer.go#L37-L44

m = items[0]
}
for i := 1; i < len(items); i++ {

if items[i] < m {
m = items[i]

}
}
return Some(m)

}

Figure 22.2: Min function in util.go#L46-L60

However, this way of calculating the minimum creation block is not efficient, as it requires
two loops: first looping through the rivals of the edge, creating a slice of their creation
blocks, and then iterating over that slice again to find the minimum. Instead, this
functionality could be achieved by calculating the minimum creation block on the first loop,
thereby avoiding the creation of the slice and its subsequent looping to calculate the
minimum.

Recommendations
Short term, optimize the earliestCreatedRivalBlockNumber function by calculating
the minimum creation block when the rivals are being iterated over.

Long term, review the codebase for opportunities to document optimizations and
implement them.

Trail of Bits 64 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/28770065aeaeba40f72f8ef8158e9dcf72aa6678/util/util.go#L46-L60

23. The localTimer function can be optimized to reduce computation

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-23

Target: validator/challenge-tree/path_timer.go

Description
The localTimer function can be optimized for the case in which the edge creation block is
the same as the block for which the query is being made.

Given an edge and a block number, the localTimer function returns the unrivaled timer
of the edge at that given block number.

Intuitively, we can identify the following scenarios in this function:

● If the block number is lower than the creation block of the edge, then the edge was
not yet created and its unrivaled time is therefore zero.

● If the block number is higher than or equal to the creation block of the edge, then
there are two scenarios:

○ The edge is unrivaled at that block, and its unrivaled time is therefore the
difference between the block number and the edge’s creation block.

○ The edge is rivaled at that block, and its unrivaled time is therefore the
difference between the creation block of the earliest rival and the edge’s
creation block, or zero in the case that the earliest created rival was created
before or at the same time the edge was.

As shown below, these scenarios are being effectively implemented.

func (ht *HonestChallengeTree) localTimer(e protocol.ReadOnlyEdge, blockNum uint64)
(uint64, error) {

if blockNum < e.CreatedAtBlock() {
return 0, nil

}
// If no rival at a block num, then the local timer is defined
// as t - t_creation(e).
unrivaled, err := ht.unrivaledAtBlockNum(e, blockNum)
if err != nil {

Trail of Bits 65 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

return 0, err
}
if unrivaled {

return blockNum - e.CreatedAtBlock(), nil
}
// Else we return the earliest created rival's block number: t_rival -

t_creation(e).
// This unwrap is safe because the edge has rivals at this point due to the

check above.
earliest := ht.earliestCreatedRivalBlockNumber(e)
tRival := earliest.Unwrap()
if e.CreatedAtBlock() >= tRival {

return 0, nil
}
return tRival - e.CreatedAtBlock(), nil

}

Figure 23.1: localTimer function in
validator/challenger-tree/path_timer.go#L12-L33

However, by carefully reviewing the second scenario for the case in which the edge was
created at the block we are querying for, we can make an assumption that would allow us
to optimize the code: that the unrivaled time of an edge at the time of its creation is always
zero, regardless of whether it is rivaled.

Recommendations
Short term, change the first if statement from blockNum < e.CreatedAtBlock() to
blockNum <= e.CreatedAtBlock().

Long term, review the codebase for opportunities to document optimizations and
implement them.

Trail of Bits 66 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/28770065aeaeba40f72f8ef8158e9dcf72aa6678/validator/challenge-tree/path_timer.go#L12-L33

24. Remove honest nodes from the mutual ids map

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-24

Target: validator/challenge-tree/tree.go

Description
Whenever a new honest edge is added to the tree, it will also be added to the mutual ID’s
map that is meant to contain all the rivals of that honest edge.

The main purpose of the AddEdge function is to track honest edges by adding them to the
honest challenge tree; additionally, the function also tracks rivals by adding them to the
mutualIds mapping, which is useful for calculating unrivaled timers.

However, as shown in the snippet below, the function will add honest edges to the
mutualIds mapping, which is meant to track only the rivals of the honest edges.

func (ht *HonestChallengeTree) AddEdge(ctx context.Context, eg
protocol.ReadOnlyEdge) error {

[...]

// Check if the edge id should be added to the rivaled edges set.
// Here we only care about edges here that are either honest or those whose

start
// history commitments we agree with.
if agreement.AgreesWithStartCommit || agreement.IsHonestEdge {

mutualId := eg.MutualId()
mutuals := ht.mutualIds.Get(mutualId)
if mutuals == nil {

ht.mutualIds.Put(mutualId, threadsafe.NewMap[protocol.EdgeId,
creationTime]())

mutuals = ht.mutualIds.Get(mutualId)
}
mutuals.Put(eg.Id(), creationTime(eg.CreatedAtBlock()))

}
return nil

}

Trail of Bits 67 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Figure 24.1: AddEdge function in validator/challenger-tree/tree.go#L61-L124

This behavior is not only redundant (as honest edges are already being tracked), but it also
creates weird semantics in the code, as this behavior implies that an honest edge is a rival
to itself and therefore forces other functions to explicitly remove the honest edge from the
list of rivals when making calculations. One example is in the rivalsWithCreationTimes
function, shown below.

func (ht *HonestChallengeTree) rivalsWithCreationTimes(eg protocol.ReadOnlyEdge)
[]*rival {

rivals := make([]*rival, 0)
mutualId := eg.MutualId()
mutuals := ht.mutualIds.Get(mutualId)
if mutuals == nil {

ht.mutualIds.Put(mutualId, threadsafe.NewMap[protocol.EdgeId,
creationTime]())

return rivals
}
_ = mutuals.ForEach(func(rivalId protocol.EdgeId, t creationTime) error {

if rivalId == eg.Id() {
return nil

}
rivals = append(rivals, &rival{

id: rivalId,
createdAtBlock: t,

})
return nil

})
return rivals

}

Figure 24.2: rivalsWithCreationTimes function in
validator/challenger-tree/path_timer.go#L80-L99

Recommendations
Short term, do not add honest edges to the mutualIds map.

Long term, thoroughly review and document the assumptions regarding edge tracking.

Trail of Bits 68 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/28770065aeaeba40f72f8ef8158e9dcf72aa6678/validator/challenge-tree/tree.go#L61-L124
https://github.com/OffchainLabs/challenge-protocol-v2/blob/28770065aeaeba40f72f8ef8158e9dcf72aa6678/validator/challenge-tree/path_timer.go#L80-L99

25. Unsafe Uint64 operation for block number

Severity: Low Difficulty: High

Type: Undefined Behavior Finding ID: TOB-ARBCH-25

Target: validator/chain-watcher/watcher.go

Description
The block number is represented as BigInt. In two instances, the Uint64 part of the block
number is taken without validating that the number can be represented with a Uint64.
This could lead to an undefined result.

The first case is in the Watch function, which continuously polls the latest block to check for
possible edge-related events.

latestBlock, err := w.backend.HeaderByNumber(ctx, nil)
if err != nil {

log.Error(err)
continue

}
toBlock := latestBlock.Number.Uint64()
if fromBlock == toBlock {

continue
}

Figure 25.1: Snippet of Watch function in
validator/chain-watcher/watcher.go#L178-L186

The second case is in the getStartEndBlockNum function, which is used to obtain the
start and end block numbers for the initial query of events in the Watch function based on
the latest assertion confirmed.

header, err := w.backend.HeaderByNumber(ctx, nil)
if err != nil {

return filterRange{}, err
}
return filterRange{

startBlockNum: startBlock,
endBlockNum: header.Number.Uint64(),

}, nil

Trail of Bits 69 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/69dddcca4bbb670e713458dc9ba9f4b801f0328b/validator/chain-watcher/watcher.go#L178-L186

Figure 25.2: Snipper of getStartEndBlockNum function in
validator/chain-watcher/watcher.go#L500-L507

Exploit Scenario
Ethereum mainnet’s block number reaches a value greater than 2**64. The Watcher
service tries to obtain the edge-related events of the last block, but undefined behavior
occurs.

Recommendations
Short term, validate with the isUint64() function the block number before taking only
the Uint64 part.

Long term, when casting to a smaller size type, always validates that the current value is
small enough to fit in the new size type and adds a test for the bad case.

Trail of Bits 70 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/69dddcca4bbb670e713458dc9ba9f4b801f0328b/validator/chain-watcher/watcher.go#L500-L507

26. Watcher could miss edges validated by time

Severity: Medium Difficulty: Medium

Type: Data Validation Finding ID: TOB-ARBCH-26

Target: validator/chain-watcher/watcher.go

Description
The Watcher service is a single point that stores information related to edge confirmations
that can be used by other components of the validator. The Watch function is the main
functionality that continuously polls for new edge-related events.

When first starting up, the Watcher service attempts to obtain all of the events in the range
of the latest-confirmed assertion’s block number to the current block number to see if
there are any confirmed edges. However, as shown in the snippet below, it does not check
for edges confirmed by time.

func (w *Watcher) Watch(ctx context.Context) {
scanRange, err := util.RetryUntilSucceeds(ctx, func() (filterRange, error) {

return w.getStartEndBlockNum(ctx)
})
if err != nil {

log.Error(err)
return

}
fromBlock := scanRange.startBlockNum
toBlock := scanRange.endBlockNum
...
// Checks for different events right away before we start polling.
_, err = util.RetryUntilSucceeds(ctx, func() (bool, error) {

return true, w.checkForEdgeAdded(ctx, filterer, filterOpts)
})
...
_, err = util.RetryUntilSucceeds(ctx, func() (bool, error) {

return true, w.checkForEdgeConfirmedByOneStepProof(ctx, filterer,
filterOpts)

})
...
_, err = util.RetryUntilSucceeds(ctx, func() (bool, error) {

return true, w.checkForEdgeConfirmedByChildren(ctx, filterer,
filterOpts)

Trail of Bits 71 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

})
...
_, err = util.RetryUntilSucceeds(ctx, func() (bool, error) {

return true, w.checkForEdgeConfirmedByClaim(ctx, filterer, filterOpts)
})
...

fromBlock = toBlock

Figure 26.1: Snippet of Watch function in
validator/chain-watcher/watcher.go#L109-L171

Exploit Scenario
An edge is confirmed by time, but the validator misses it.

Recommendations
Short term, check if an edge is confirmed by time before entering the polling loop with
checkForEdgeConfirmedByTime.

Long term, improve the testing suite by testing that each possible way for an edge to be
confirmed is caught before entering the loop and in the loop itself. This would also prevent
potential regression issues.

Trail of Bits 72 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/69dddcca4bbb670e713458dc9ba9f4b801f0328b/validator/chain-watcher/watcher.go#L109-L171

27. Possible nil deref when getting a top level assertion

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-ARBCH-27

Target: protocol/sol-implementation/assertion_chain.go

Description
The TopLevelAssertion function can panic due to a nil dereference when unwrapping
an edge if it is not present.

The GetEdge function can return a nil value if the edge is not present; however, this value
is not checked with isNone() before calling Unwrap().

func (ac *AssertionChain) TopLevelAssertion(ctx context.Context, edgeId
protocol.EdgeId) (protocol.AssertionId, error) {

cm, err := ac.SpecChallengeManager(ctx)
if err != nil {

return protocol.AssertionId{}, err
}
edgeOpt, err := cm.GetEdge(ctx, edgeId)
if err != nil {

return protocol.AssertionId{}, err
}
return edgeOpt.Unwrap().PrevAssertionId(ctx)

}

Figure 27.1: TopLevelAssertion function in
protocol/sol-implementation/assertion_chain.go#L222-L232

Exploit Scenario
The validator client tries to get the top-level assertion of an edge that is not present, and
the client crashes.

Recommendations
Short term, check if edgeOpt is nil with isNone() and return an error in that case.

Long term, test the happy and unhappy cases; in this instance, test TopLevelAssertion
with an edge that is not present and validate the expected behavior.

Trail of Bits 73 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/69dddcca4bbb670e713458dc9ba9f4b801f0328b/protocol/sol-implementation/assertion_chain.go#L222-L232

28. Discrepancy between on and o�-chain confirmation timers

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-28

Target: validator/edge_tracker.go, EdgeChallengeManagerLib.sol

Description
A discrepancy between the validator code and the contract code when determining
whether an edge can be confirmed by time leads the validator to “believe” that the
confirmation can happen earlier than it should.

The smart contract implementation of confirmation by time allows confirmations only
when the cumulative timer of the edge is higher than the confirmation threshold.

function confirmEdgeByTime(
EdgeStore storage store,
bytes32 edgeId,
bytes32[] memory ancestorEdgeIds,
uint256 claimedAssertionUnrivaledBlocks,
uint256 confirmationThresholdBlock

) internal returns (uint256) {
[...]

require(
totalTimeUnrivaled > confirmationThresholdBlock,
"Total time unrivaled not greater than confirmation threshold"

);

store.edges[edgeId].setConfirmed();

return totalTimeUnrivaled;
}

Figure 28.1: confirmEdgeByTime function in
contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L611-L65

5

In contrast, the challenge protocol specification allows confirmations as soon as the
cumulative time of the edge is higher than or equal to the confirmation threshold. While

Trail of Bits 74 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/aefb72f1a90b7ca313f6fb29930ae57da5b21a65/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L611-L655
https://github.com/OffchainLabs/challenge-protocol-v2/blob/aefb72f1a90b7ca313f6fb29930ae57da5b21a65/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L611-L655

this “off-by-one” discrepancy is not a critical issue, it is nonetheless important that these
checks are consistent across all components of the system.

However, as shown in the snippet below, this is not the case: the validator code follows the
protocol specification, which will lead to a failed confirmation and therefore to unnecessary
gas expenditure.

func (et *edgeTracker) tryToConfirm(ctx context.Context) (bool, error) {
[...]

chalPeriod, err := manager.ChallengePeriodBlocks(ctx)
if timer >= challengetree.PathTimer(chalPeriod) {

if err := et.edge.ConfirmByTimer(ctx, ancestors); err != nil {
return false, errors.Wrap(err, "could not confirm by timer")

}
log.WithFields(et.uniqueTrackerLogFields()).Info("Confirmed by time")
return true, nil

}
return false, nil

}

Figure 28.2: tryToConfirm function in validator/edge_tracker.go#L176-L233

Exploit Scenario
A new challenge is started in which Alice (the honest actor) and Bob participate.

The challenge progresses normally until one of Alice’s edges reaches an unrivaled timer of
N (equal to the challenge threshold). The validator code, per the specification, deems the
edge “confirmable” and therefore tries to confirm the edge by sending a transaction to the
challenge contract.

However, because of the “off-by-one” discrepancy, this confirmation fails, and the validator
has to wait one block (i.e., until N + 1) to be able to confirm the edge.

Recommendations
Short term, update the Solidity code to follow the protocol specification.

Long term, thoroughly review the timer assumptions between the on and off-chain
components and ensure they are consistent.

Trail of Bits 75 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/cad398e6e37a93ea9654fa1e1f7fa70478ca4da5/validator/edge_tracker.go#L176-L233

29. Front-running certain validator operations leads to honest edges not
being tracked

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-29

Target: validator/edge_tracker.go

Description
Front-running the validator when a bisection or a new sub-challenge operation is being
performed prevents the newly created honest edge(s) from being tracked.

The validator is responsible for keeping track of all honest edges in a given challenge. Once
an honest edge is created, the validator spawns an edge tracker that, through a finite state
machine, will handle the lifecycle of the edge from its creation to its confirmation.

However, in some instances, the validator may be front-run either by other honest actors
or by dishonest actors, which will cause the validator to miss the creation of the tracker for
those honest edges.

As shown in the snippet below, when a bisection occurs, if the challenge contract returns
an “already exists” error, the tracker state will be changed to the edgeStarted state and
the trackers for the children of the edge will not be created.

case edgeBisecting:
lowerChild, upperChild, err := et.bisect(ctx)
if err != nil {

if errors.Is(err, solimpl.ErrAlreadyExists) {
return et.fsm.Do(edgeBackToStart{})

}
log.WithError(err).WithFields(fields).Error("Could not bisect")
return et.fsm.Do(edgeBackToStart{})

}
[...]

Figure 29.1: edgeBisecting state in validator/edge_tracker.go#L97-L130

Additionally, as shown in the snippet below, when a new sub-challenge leaf is being
created, the same instance occurs. The tracker state will change to edgeStarted and it will

Trail of Bits 76 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/cad398e6e37a93ea9654fa1e1f7fa70478ca4da5/validator/edge_tracker.go#L97-L130

continue looping, missing the creation of the edge tracker for the already created
sub-challenge leaf.

case edgeAddingSubchallengeLeaf:
if err := et.openSubchallengeLeaf(ctx); err != nil {

if strings.Contains(err.Error(), "Edge already exists") {
return et.fsm.Do(edgeBackToStart{})

}
log.WithFields(fields).WithError(err).Error("could not open

subchallenge leaf")
return et.fsm.Do(edgeBackToStart{})

}
return et.fsm.Do(edgeBackToStart{})

Figure 29.2: edgeAddingSubchallengeLeaf state in
validator/edge_tracker.go#L87-L95

In summary, this will cause the validator to miss the tracker for the honest edges and, in
the worst case scenario, can lead to the dishonest actor winning the challenge if the
behavior goes unnoticed.

Exploit Scenario
A new challenge is started in which Alice (the honest actor) and Bob participate.

The challenge progresses normally until one of Alice’s edges reaches a bisection. The edge
tracker for Alice’s edge sends a transaction to the challenge contract to execute the
bisection, but Bob front-runs Alice’s transaction by copying her calldata, leading to a
successful bisection.

However, because the validator was front-run, the transaction fails and the edge tracker
does not spawn new trackers for the newly created children. This causes the validator to
become stuck and unable to progress the challenge.

Recommendations
Short term, update the validator code so that the tracker behaves differently based on the
error returned by the Solidity implementation. For example, if an “Already exists” error is
returned during a bisection, this means that the bisection already occurred on-chain and
the validator should therefore spawn new trackers for the children.

Long term, thoroughly review the validator code, assuming that the risk of front-running
exists, and document any instances in which front-running could lead to unexpected
behavior.

Trail of Bits 77 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/cad398e6e37a93ea9654fa1e1f7fa70478ca4da5/validator/edge_tracker.go#L87-L95

Once these instances are documented, implement the necessary safety checks to avoid
unexpected behavior.

Trail of Bits 78 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

30. Consider adding an EdgeAwaitingConfirmation state to avoid unnecessary
computation

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-30

Target: validator/edge_tracker.go

Description
In certain instances, an edge cannot perform any operation and can only wait for its
confirmation; however, the edge tracker will still perform certain checks or even try to
perform certain actions that are guaranteed to fail.

As shown in the snippet below, whenever an edge is in the edgeStarted state, multiple
checks will be performed on it. These include a check to determine whether the edge can
be one step proven, another check to determine whether the edge was already confirmed,
and a check to determine whether the edge has a rival.

case edgeStarted:
canOsp, err := canOneStepProve(et.edge)
if err != nil {

log.WithFields(fields).WithError(err).Error("could not check if edge
can be one step proven")

return et.fsm.Do(edgeBackToStart{})
}
if canOsp {

return et.fsm.Do(edgeHandleOneStepProof{})
}
wasConfirmed, err := et.tryToConfirm(ctx)
if err != nil {

log.WithFields(fields).WithError(err).Debug("could not confirm edge
yet")

return et.fsm.Do(edgeBackToStart{})
}
if wasConfirmed {

return et.fsm.Do(edgeConfirm{})
}
hasRival, err := et.edge.HasRival(ctx)
if err != nil {

return errors.Wrap(err, "could not check presumptive")
}

Trail of Bits 79 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

if !hasRival {
return et.fsm.Do(edgeBackToStart{})

}
atOneStepFork, err := et.edge.HasLengthOneRival(ctx)
if err != nil {

log.WithFields(fields).WithError(err).Error("could not check if edge
has length one rival")

return et.fsm.Do(edgeBackToStart{})
}
if atOneStepFork {

return et.fsm.Do(edgeHandleOneStepFork{})
}
return et.fsm.Do(edgeBisect{})

Figure 30.1: edgeStarted state in validator/edge_tracker.go#L40-L72

Ultimately, if all these checks do not pass and the edge has a rival, the tracker will try to
bisect the edge.

case edgeBisecting:
lowerChild, upperChild, err := et.bisect(ctx)
if err != nil {

if errors.Is(err, solimpl.ErrAlreadyExists) {
return et.fsm.Do(edgeBackToStart{})

}
log.WithError(err).WithFields(fields).Error("Could not bisect")
return et.fsm.Do(edgeBackToStart{})

}
[...]

Figure 30.2: edgeBisecting state in validator/edge_tracker.go#L97-L130

However, as shown in the snippet above, this bisection can happen only once in the
lifecycle of an edge. Once it has happened, the edge will return to the edgeStarted state
and start over, performing the same checks over and over and trying to bisect the edge
again, leading to unnecessary computation.

Exploit Scenario
A new challenge is started in which Alice (the honest actor) and Bob participate.

The challenge progresses normally until one of Alice’s edges reaches a bisection. The edge
tracker for Alice’s edge sends a transaction to the challenge contract to execute the
bisection. The bisection is successful, and the new trackers for the children are spawned.

Trail of Bits 80 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/cad398e6e37a93ea9654fa1e1f7fa70478ca4da5/validator/edge_tracker.go#L40-L72
https://github.com/OffchainLabs/challenge-protocol-v2/blob/cad398e6e37a93ea9654fa1e1f7fa70478ca4da5/validator/edge_tracker.go#L97-L130

However, the tracker for the bisected edge will continue looping between the
edgeStarted and edgeBisecting states, performing unnecessary checks and attempting
bisection until it can be confirmed.

Recommendations
Short term, to avoid the unnecessary computation, we propose the inclusion of a new
state, edgeAwaitingConfirmation. This state should be used for edges on which no
other operation can be performed and are waiting for confirmation.

The edges that could go into this new state include:

● Edges that have been bisected
● Edges that led to a sub-challenge (i.e., length-one Block and BigStep edges).

Long term, thoroughly review the edge tracker logic for instances of unnecessary
computation and look for opportunities to minimize it.

Trail of Bits 81 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

31. Unclear code comment regarding the ability to disable and enable staking

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBCH-31

Target: contracts/src/challengeV2/EdgeChallengeManager.sol

Description
The EdgeChallengeManager contract contains a code comment that suggests the staking
mechanism can be disabled; however, in the current implementation, there are no
functions exposing this functionality, as the staking is set upon initialization. Furthermore,
we identified some instances in which disabling or enabling the staking functionality once a
challenge has already started can lead to unexpected behavior.

function createLayerZeroEdge(CreateEdgeArgs calldata args) external returns
(bytes32) {

...
if (args.edgeType == EdgeType.Block) {

...
IERC20 edgeStakeToken = stakeToken;
uint256 edgeStakeAmount = stakeAmount;

// when a zero layer block edge is created it must include a stake. Each time a zero
layer block
// edge is created it forces the honest participants to do some work, so we want to
discentivise
// their creation. The amount should also be enough to pay for the gas costs
incurred by the honest
// participant. This can be arranged out of bound by the excess stake receiver.
// the assertion chain can disable challenge staking by setting a zero stake token
or amount

if (address(edgeStakeToken) != address(0) && stakeAmount != 0) {
// since only one edge in a group of rivals can ever be confirmed, we know that we
// will never need to refund more than one edge. Therefore we can immediately send
// all stakes provided after the first one to an excess stake receiver.

address receiver = edgeAdded.hasRival ? excessStakeReceiver :
address(this);

edgeStakeToken.safeTransferFrom(msg.sender, receiver, stakeAmount);
}

} else {
edgeAdded = store.createLayerZeroEdge(args, ard, oneStepProofEntry,

expectedEndHeight);

Trail of Bits 82 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

}

Figure 31.1: Snippet of the createLayerZeroEdge function in
contracts/src/challengeV2/EdgeChallengeManager.sol#L334-L387

This enabling and disabling of staking could lead to unexpected behavior; for example, if
the stakeAmount is set to 0 when a layer zero edge is already created with a stake, then
the creator cannot get the stake back, even if it is the winning edge.

Another case is if a layer-zero edge is created when there are no stake requirements and
then activated; the creator can get a refund even if he did not deposit any stake.

function refundStake(bytes32 edgeId) public {
ChallengeEdge storage edge = store.get(edgeId);
// setting refunded also do checks that the edge cannot be refunded twice
edge.setRefunded();

IERC20 st = stakeToken;
uint256 sa = stakeAmount;
// no need to refund with the token or amount where zero'd out
if (address(st) != address(0) && sa != 0) {

st.safeTransfer(edge.staker, sa);
}

emit EdgeRefunded(edgeId, store.edges[edgeId].mutualId(), address(st), sa);
}

Figure 31.1: refundStake function in
contracts/src/challengeV2/EdgeChallengeManager.sol#L497-L510

While discussing this issue, the client mentioned that the comment was left over from a
previous design. In the current design, it would not be possible to update the staking for a
given challenge; instead, each challenge would have a challenge manager contract assigned
to it, and each contract would determine whether or not the staking is enabled. We
recommend removing the comment and updating the documentation regarding this aspect
of the system.

Trail of Bits 83 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/aefb72f1a90b7ca313f6fb29930ae57da5b21a65/contracts/src/challengeV2/EdgeChallengeManager.sol#L334-L387
https://github.com/OffchainLabs/challenge-protocol-v2/blob/aefb72f1a90b7ca313f6fb29930ae57da5b21a65/contracts/src/challengeV2/EdgeChallengeManager.sol#L497-L510

32. Validate the withdrawn amount by a staker is greater than zero

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-32

Target: contracts/src/rollup/RollupUserLogic.sol

Description
The withdrawStakerFunds function allows the stakers to withdraw their deposited
amount of stakeToken; however, it does not validate that the amount to withdraw is
greater than 0. This could allow users to spend gas unnecessarily if they attempt to
withdraw zero tokens. Additionally, this change would be consistent with the use of Ether
as a stakeToken in this codebase, where this check is already in place.

function withdrawStakerFunds() external override whenNotPaused returns (uint256) {
uint256 amount = withdrawFunds(msg.sender);
// This is safe because it occurs after all checks and effects
require(IERC20Upgradeable(stakeToken).transfer(msg.sender, amount),

"TRANSFER_FAILED");
return amount;

}

Figure 32.1: ERC20 version of withdrawStakerFunds function in
contracts/src/rollup/RollupUserLogic.sol#L317-L322

function withdrawStakerFunds() external override whenNotPaused returns (uint256) {
uint256 amount = withdrawFunds(msg.sender);
require(amount > 0, "NO_FUNDS_TO_WITHDRAW");
// This is safe because it occurs after all checks and effects
// solhint-disable-next-line avoid-low-level-calls
(bool success,) = msg.sender.call{value: amount}("");
require(success, "TRANSFER_FAILED");
return amount;

}

Figure 32.2: Ether version of withdrawStakerFunds function in
contracts/src/rollup/RollupUserLogic.sol#L267-L275

Trail of Bits 84 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/c8d60a59cc39435562a695eec80693c5fb1bd521/contracts/src/rollup/RollupUserLogic.sol#L317-L322
https://github.com/OffchainLabs/challenge-protocol-v2/blob/c8d60a59cc39435562a695eec80693c5fb1bd521/contracts/src/rollup/RollupUserLogic.sol#L267-L275

Exploit Scenario
A new contract that integrates with the rollup system is created. The developer integrates
the new contract with both the ERC20 and Ether versions of the RollupUserLogic
contract. However, the developer is unaware that the behavior of these two differs, and
expects the withdrawals to revert when there are no funds to withdraw. This is not the case
when the target contract is the ERC20 version.

Recommendations
Short term, add a check that the amount is greater than zero.

Long term, whenever multiple asset types can be used in a system, it is important that,
whenever possible, the behavior of the system for each asset is the same and that any
difference is thoroughly documented.

Trail of Bits 85 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

33. Consider deleting the staker when their stake is reduced to zero

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBCH-34

Target: contracts/src/rollup/RollupCore.sol

Description
The RollupCore contract exposes two functions related to the withdrawal of staked funds:
reduceStakeTo and withdrawStaker. For the most part, these two functions are
essentially the same; the first one allows the sender to indicate the amount of funds to be
left staked, and the second allows stakers to withdraw all available funds.

function reduceStakeTo(address stakerAddress, uint256 target) internal returns
(uint256) {

Staker storage staker = _stakerMap[stakerAddress];
uint256 current = staker.amountStaked;
require(target <= current, "TOO_LITTLE_STAKE");
uint256 amountWithdrawn = current - target;
staker.amountStaked = target;
increaseWithdrawableFunds(stakerAddress, amountWithdrawn);
emit UserStakeUpdated(stakerAddress, current, target);
return amountWithdrawn;

}

Figure 33.1: reduceStakeTo function in
contracts/src/rollup/RollupCore.sol#L228-L237

However, there is another very important difference between the two functions:
withdrawStaker deletes the staker entry after withdrawing the funds, but
reduceStakeTo does not.

function withdrawStaker(address stakerAddress) internal {
Staker storage staker = _stakerMap[stakerAddress];
uint256 initialStaked = staker.amountStaked;
increaseWithdrawableFunds(stakerAddress, initialStaked);
deleteStaker(stakerAddress);
emit UserStakeUpdated(stakerAddress, initialStaked, 0);

}

Trail of Bits 86 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/c8d60a59cc39435562a695eec80693c5fb1bd521/contracts/src/rollup/RollupCore.sol#L228-L237

Figure 33.2: withdrawStaker function in
contracts/src/rollup/RollupCore.sol#L244-L250

This difference is mostly inconsequential; however, reduceStakeTo allows the sender to
set the final staked amount to zero, which is essentially the same as withdrawing all the
funds. This suggests that reduceStakeTo should also delete the staker entry if the target
is zero.

Exploit Scenario
If the protocol runs under the assumption that stakers without any staked funds should
have their entries removed, then stakers may bypass this “invariant” by calling
reduceStakeTo with zero as a target.

Recommendations
Short term, consider whether reduceStakeTo should also delete the staker entry
whenever the target is zero.

Long term, whenever two very similar functions are implemented, consider whether they
have any common case and whether or not their behavior in that common case should be
different.

Trail of Bits 87 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/c8d60a59cc39435562a695eec80693c5fb1bd521/contracts/src/rollup/RollupCore.sol#L244-L250

34. Initial assertion’s status is not confirmed

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBCH-34

Target: contracts/src/rollup/RollupCore.sol

Description
When initializing the Rollup, an initial empty assertion is created; however, its status will
remain as pending instead of confirmed.

The initialize function creates an assertion with an empty state by calling
AssertionNodeLib.createAssertion. It then calls initializeCore with the created
assertion, which will be set as the _latestConfirmed assertion.

function initialize(Config calldata config, ContractDependencies calldata
connectedContracts)

external
override
onlyProxy
initializer

{
...
bytes32 genesisHash = RollupLib.assertionHash({

parentAssertionHash: parentAssertionHash,
afterState: emptyExecutionState,
inboxAcc: inboxAcc

});
uint64 inboxMaxCount = 1; // force the first assertion to read a message
AssertionNode memory initialAssertion = AssertionNodeLib.createAssertion(

inboxMaxCount,
0, // prev assertion
uint64(block.number), // deadline block (not challengeable)
true,
RollupLib.configHash({

wasmModuleRoot: wasmModuleRoot,
requiredStake: baseStake,
challengeManager: address(challengeManager),
confirmPeriodBlocks: confirmPeriodBlocks

})
);

Trail of Bits 88 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

initializeCore(initialAssertion, genesisHash);

Figure 34.1: Snippet of the initialize function in
contracts/src/rollup/RollupAdminLogic.sol#L62-L81

function initializeCore(AssertionNode memory initialAssertion, bytes32
assertionHash) internal {

__Pausable_init();
_assertions[assertionHash] = initialAssertion;
_latestConfirmed = assertionHash;

}

Figure 34.2: initializeCore function in
contracts/src/rollup/RollupCore.sol#L158-L162

As shown in figure 34.3, the createAssertion function creates an assertion with its status
set as Pending. However, since this assertion is the first one and set as
_latestConfirmed, there is an inconsistency because its state was never set to
Confirmed.

library AssertionNodeLib {
/**
* @notice Initialize a Assertion
* @param _nextInboxPosition The inbox position that the assertion that succeeds

should process up to and including
* @param _prevId Initial value of prevId
* @param _deadlineBlock Initial value of deadlineBlock
*/
function createAssertion(

uint64 _nextInboxPosition,
bytes32 _prevId,
uint64 _deadlineBlock,
bool _isFirstChild,
bytes32 _configHash

) internal view returns (AssertionNode memory) {
AssertionNode memory assertion;
assertion.nextInboxPosition = _nextInboxPosition;
assertion.prevId = _prevId;
assertion.deadlineBlock = _deadlineBlock;
assertion.noChildConfirmedBeforeBlock = _deadlineBlock;
assertion.createdAtBlock = uint64(block.number);
assertion.isFirstChild = _isFirstChild;
assertion.configHash = _configHash;
assertion.status = AssertionStatus.Pending;
return assertion;

}

Trail of Bits 89 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/c8d60a59cc39435562a695eec80693c5fb1bd521/contracts/src/rollup/RollupAdminLogic.sol#L62-L81
https://github.com/OffchainLabs/challenge-protocol-v2/blob/c8d60a59cc39435562a695eec80693c5fb1bd521/contracts/src/rollup/RollupCore.sol#L158-L162

Figure 34.3: createAssertion function in
contracts/src/rollup/Assertion.sol#L68-L92

Recommendations
Short term, consider forcing the state of the initial assertion to be confirmed.

Long term, thoroughly document the assumptions regarding the initial assertion creation
(i.e., what configuration it should have), and consider whether those assumptions should
be explicitly enforced by the contract.

Trail of Bits 90 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/c8d60a59cc39435562a695eec80693c5fb1bd521/contracts/src/rollup/Assertion.sol#L68-L92

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 91 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 92 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Trail of Bits 93 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Documentation The presence of comprehensive and readable codebase documentation

Memory Safety
and Error Handling

The presence of memory safety and robust error-handling mechanisms

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 94 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

C. Code Quality Recommendations

● The code comments contain errors:
○ The comment below should be “End not less than or equal to length”:

require(endIndex <= arr.length, "End not less than length");

Figure C.1: Slice function in ArrayUtilsLib.sol#L30

○ The returned error should be ErrExpansionTooLarge.

if uint64(len(me)) >= MAX_LEVEL {
return common.Hash{}, ErrLevelTooHigh

}

Figure C.2: Root function in prefix_proofs.go#L110-L113

○ The comment regarding the root of a size 1 subtree is wrong; it should be
root = (C).

// ME of the C tree = (C), root=(C, 0)

Figure C.3: Documentation in prefix_proofs.go#L32

○ There is a typo in the History commitment documentation. The EH node
should be H(EF, GH).

Trail of Bits 95 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/contracts/src/challengeV2/libraries/ArrayUtilsLib.sol#L30
https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/util/prefix-proofs/prefix_proofs.go#L110-L113
https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55f3547f3ef7ebe051b4ed5881f9928a8b4fb73/util/prefix-proofs/prefix_proofs.go#L32
https://www.notion.so/History-Commitments-Proofs-6598fa4035e340f483b8d30670284bde#d86caddea5d34875b1a5547f7e43ca08

○ The checkClaimIdLink function does not do what the @notice comment
says it will.

/// @notice Check that the claimId of a claiming edge matched the edge id of a
supplied edge

/// @dev Does some additional sanity checks to ensure that the claim id link
is valid

/// @param store The store containing all edges and rivals
/// @param edgeId The edge being claimed
/// @param claimingEdgeId The edge with a claim id equal to edge id
function checkClaimIdLink(EdgeStore storage store, bytes32 edgeId, bytes32

claimingEdgeId) private view {
...

}

Figure C.4: checkClaimIdLink function in EdgeChallengeManagerLib.sol#L330-L347

○ The Natspec comment in the ChallengeEdge struct regarding the
lowerChildId field could be more specific; it should be replaced with “equal
to some prefix of the endHistoryRoot of this edge.”

/// @notice Edges can be bisected into two children. If this edge has been bisected
the id of the
/// lower child is populated here, until that time this value is 0. The lower child
has startHistoryRoot and startHeight
/// equal to this edge, but endHistoryRoot and endHeight equal to some prefix of the
endHistory of this edge
bytes32 lowerChildId;

Figure C.5: Natspec comment in ChallengeEdge struct in ChallengeEdgeLib.sol#L49-L51

○ The Natspec comment in the getNoCheck function should say “without
checking if it exists.”

/// @notice Gets an edge from the store with checking if it exists
/// @dev Useful where you already know the edge exists in the store - avoid a

storage lookup
/// @param store The edge store to fetch an id from
/// @param edgeId The id of the edge to fetch
function getNoCheck(EdgeStore storage store, bytes32 edgeId) internal view

returns (ChallengeEdge storage) {
return store.edges[edgeId];

}

Figure C.6: Natspec comment in getNoCheck in
EdgeChallengeManagerLib.sol#L107-L113

Trail of Bits 96 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55262291fcafdf817ff03cf4b2848b35e296584/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L330-L347
https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55262291fcafdf817ff03cf4b2848b35e296584/contracts/src/challengeV2/libraries/ChallengeEdgeLib.sol#L49-L52
https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L107-L113

○ “egde” should be “edge”:

/// @notice A proof that the end state is included in the egde
bytes32[] inclusionProof;

Figure C.7: Natspec comment in EdgeChallengeManagerLib.sol#L31-L32

○ “with y” should be “with x”:

// if x is a power of 2 then y will share no bits with y
return ((x & y) == 0);

Figure C.8: Natspec comment in EdgeChallengeManagerLib.sol#L31-L32

● The hasRivalVal function name contradicts the Natspec description, which could
cause confusion.

/// @dev Determines if the rival val is currently unrivaled
function hasRivalVal(bytes32 rivalVal) private pure returns (bool) {

return rivalVal != UNRIVALED;
}

Figure C.9: hasRivalVal function in EdgeChallengeManagerLib.sol#L144-L146

● There are redundant checks in functions:

○ hasLengthOneRival checks whether the edge exists twice.

function hasLengthOneRival(EdgeStore storage store, bytes32 edgeId) internal view
returns (bool) {

require(store.edges[edgeId].exists(), "Edge does not exist");

// must be length 1 and have rivals - all rivals have the same length
return (store.edges[edgeId].length() == 1 && hasRival(store, edgeId));

}

function hasRival(EdgeStore storage store, bytes32 edgeId) internal view returns
(bool) {

require(store.edges[edgeId].exists(), "Edge does not exist");

// rivals have the same mutual id
bytes32 mutualId = store.edges[edgeId].mutualId();
bytes32 firstRival = store.firstRivals[mutualId];
// Sanity check: it should never be possible to create an edge without having an

entry in firstRivals
require(firstRival != 0, "Empty first rival");

Trail of Bits 97 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L31-L32
https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L31-L32
https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55262291fcafdf817ff03cf4b2848b35e296584/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L144-L146

// can only have no rival if the firstRival is the UNRIVALED magic hash
return hasRivalVal(firstRival);

}

Figure C.10: hasLengthOneRival function in EdgeChallengeManagerLib.sol#L169-L174

○ bisectEdge checks whether the edge has children twice.

function bisectEdge(EdgeStore storage store, bytes32 edgeId, bytes32
bisectionHistoryRoot, bytes memory prefixProof)

internal
returns (bytes32, bytes32)

{
require(store.edges[edgeId].status == EdgeStatus.Pending, "Edge not pending");
require(hasRival(store, edgeId), "Cannot bisect an unrivaled edge");

// cannot bisect an edge twice
ChallengeEdge memory ce = get(store, edgeId);
require(
store.edges[edgeId].lowerChildId == 0 && store.edges[edgeId].upperChildId ==

0, "Edge already has children"
);

[...]

store.edges[edgeId].setChildren(lowerChildId, upperChildId);

[...]
}

Figure C.11: bisectEdge function in EdgeChallengeManagerLib.sol#L236-L295

function setChildren(ChallengeEdge storage edge, bytes32 lowerChildId, bytes32
upperChildId) internal {

require(edge.lowerChildId == 0 && edge.upperChildId == 0, "Children already
set");

edge.lowerChildId = lowerChildId;
edge.upperChildId = upperChildId;

}

Figure C.12: setChildren function in ChallengeEdgeLib.sol#L220-L224

● The add function code could be optimized to perform one less read from storage
when emitting the EdgeAdded event. In particular, the line
hasRivalVal(store.firstRivals[mutualId] could be replaced for a local
Boolean that is set to true when the first else statement is entered; figures C.13
and C.14 below shows the original code and the proposed optimized version.

Trail of Bits 98 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55262291fcafdf817ff03cf4b2848b35e296584/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L169-L174
https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55262291fcafdf817ff03cf4b2848b35e296584/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L236-L295
https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55262291fcafdf817ff03cf4b2848b35e296584/contracts/src/challengeV2/libraries/ChallengeEdgeLib.sol#L220-L224

function add(EdgeStore storage store, ChallengeEdge memory edge) internal {
[...]
bytes32 firstRival = store.firstRivals[mutualId];

// the first time we add a mutual id we store a magic string hash against it
// We do this to distinguish from there being no edges
// with this mutual. And to distinguish it from the first rival, where we
// will use an actual edge id so that we can look up the created when time
// of the first rival, and use it for calculating time unrivaled
if (firstRival == 0) {

store.firstRivals[mutualId] = UNRIVALED;
} else if (firstRival == UNRIVALED) {

store.firstRivals[mutualId] = eId;
} else {

// after we've stored the first rival we dont need to keep a record of any
// other rival edges - they will all have a zero time unrivaled

}

emit EdgeAdded(
eId,
mutualId,
edge.originId,
hasRivalVal(store.firstRivals[mutualId]),
store.edges[eId].length(),
edge.eType,
edge.staker != address(0)

);
}

Figure C.13: Original code for the add function in
EdgeChallengeManagerLib.sol#L103-L141

function add(EdgeStore storage store, ChallengeEdge memory edge) internal {
[...]
bytes32 firstRival = store.firstRivals[mutualId];
bool hasRivalVal = false;

// the first time we add a mutual id we store a magic string hash against it
// We do this to distinguish from there being no edges
// with this mutual. And to distinguish it from the first rival, where we
// will use an actual edge id so that we can look up the created when time
// of the first rival, and use it for calculating time unrivaled
if (firstRival == 0) {

store.firstRivals[mutualId] = UNRIVALED;
} else if (firstRival == UNRIVALED) {

store.firstRivals[mutualId] = eId;
hasRivalVal = true;

} else {
// after we've stored the first rival we dont need to keep a record of any

Trail of Bits 99 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55262291fcafdf817ff03cf4b2848b35e296584/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L103-L141

// other rival edges - they will all have a zero time unrivaled
}

emit EdgeAdded(
eId,
mutualId,
edge.originId,
hasRivalVal,
store.edges[eId].length(),
edge.eType,
edge.staker != address(0)

);
}

Figure C.14: Proposed optimized code for the add function in
EdgeChallengeManagerLib.sol#L103-L141

● The following line is equivalent to bytes32 startHistoryRoot =
keccak256(abi.encodePacked(proofData.startState))

// since zero layer edges have a start height of zero, we know that they are
a size

// one tree containing only the start state. We can then compute the history
root directly

bytes32 startHistoryRoot = MerkleTreeLib.root(MerkleTreeLib.appendLeaf(new
bytes32[](0), proofData.startState));

Figure C.15: Snippet of code for the layerZeroCommonChecks function in
EdgeChallengeManagerLib.sol#L297-L299

● Incomplete Natspec for Block-type edges. Figure B.18 shows the decoding of the
proof for the Block edge.

/// @param proof Additional proof data
/// For Block type edges this is the abi encoding of:
/// bytes32[]: Inclusion proof - proof to show that the end
state is the last state in the end history root
/// For BigStep and SmallStep edges this is the abi
encoding of:

Figure C.16: Natspec comment for the createLayerZeroEdge function in
EdgeChallengeManagerLib.sol#L351-L354

/// @param proof Additional proof data
/// For Block type edges this is the abi encoding of:
/// bytes32[]: Inclusion proof - proof to show that the end
state is the last state in the end history root

Trail of Bits 100 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/a55262291fcafdf817ff03cf4b2848b35e296584/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L103-L141
https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L297-L299
https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L351-L354

/// For BigStep and SmallStep edges this is the abi
encoding of:

Figure C.17: Natspec comment for the createLayerZeroEdge function in
EdgeChallengeManager.sol#L38-L41

// parse the inclusion proof for later use
require(proof.length > 0, "Block edge specific proof is empty");
(

bytes32[] memory inclusionProof,
ExecutionState memory startState,
uint256 prevInboxMaxCount,
ExecutionState memory endState,
uint256 afterInboxMaxCount

) = abi.decode(proof, (bytes32[], ExecutionState, uint256,
ExecutionState, uint256));

Figure C.18: Decoded proof for a Block edge in
EdgeChallengeManagerLib.sol#L195-L203

● Moving require(hasLengthOneRival(store, args.claimId), "Claim does
not have length 1 rival"); as the first statement to execute would allow use
of the getNoCheck function instead of get because it is certain that the edge exists.

} else {
ChallengeEdge storage claimEdge = get(store, args.claimId);

// origin id is the mutual id of the claim
// all rivals and their children share the same origin id - it is a link to the

information
// they agree on
bytes32 originId = claimEdge.mutualId();

// once a claim is confirmed it's status can never become pending again, so
there is no point

// opening a challenge that references it
require(claimEdge.status == EdgeStatus.Pending, "Claim is not pending");

// Claim must be length one. If it is unrivaled then its unrivaled time is
ticking up, so there's

// no need to create claims against it
require(hasLengthOneRival(store, args.claimId), "Claim does not have length 1

rival");

Figure C.19: Snippet of code for the layerZeroTypeSpecifcChecks function in
EdgeChallengeManagerLib.sol#L221-L235

Trail of Bits 101 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/EdgeChallengeManager.sol#L38-L41
https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L195-L203
https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L221-L235

● The statements in the following figure can be moved out from the switch because
they are the same for a BigStepChallengeEdge and a
SmallStepChallengeEdge.

switch et.edge.GetType() {
case protocol.BigStepChallengeEdge:

originHeights, err := et.edge.TopLevelClaimHeight(ctx)
if err != nil {

return util.HistoryCommitment{}, nil, err
}

fromAssertionHeight := uint64(originHeights.BlockChallengeOriginHeight)
toAssertionHeight := fromAssertionHeight + 1
...

case protocol.SmallStepChallengeEdge:
originHeights, err := et.edge.TopLevelClaimHeight(ctx)
if err != nil {

return util.HistoryCommitment{}, nil, err
}

fromAssertionHeight := uint64(originHeights.BlockChallengeOriginHeight)
toAssertionHeight := fromAssertionHeight + 1
...

Figure C.20: Snippet of code for the determineBisectionHistoryWithProof function in
edge_tracker.go#L174-L197

● The comment // Also copied in
contracts/src/libraries/Constants.sol is not true because they are set in
the initialize() function of the EdgeChallengeManager contract.

// Also copied in contracts/src/libraries/Constants.sol
const LevelZeroBlockEdgeHeight = 1 << 5
const LevelZeroBigStepEdgeHeight = 1 << 5
const LevelZeroSmallStepEdgeHeight = 1 << 5

Figure C.21: Constants for the edges’ height declared in spec_interfaces.go#L195-L198

function initialize(
IAssertionChain _assertionChain,
uint256 _challengePeriodBlocks,
IOneStepProofEntry _oneStepProofEntry,
uint256 layerZeroBlockEdgeHeight,
uint256 layerZeroBigStepEdgeHeight,
uint256 layerZeroSmallStepEdgeHeight

) public initializer {
require(address(assertionChain) == address(0), "ALREADY_INIT");

Trail of Bits 102 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/validator/edge_tracker.go#L174-L197
https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/protocol/spec_interfaces.go#L195-L198

assertionChain = _assertionChain;
challengePeriodBlock = _challengePeriodBlocks;
oneStepProofEntry = _oneStepProofEntry;

require(EdgeChallengeManagerLib.isPowerOfTwo(layerZeroBlockEdgeHeight), "Block
height not power of 2");

LAYERZERO_BLOCKEDGE_HEIGHT = layerZeroBlockEdgeHeight;
require(EdgeChallengeManagerLib.isPowerOfTwo(layerZeroBigStepEdgeHeight), "Big

step height not power of 2");
LAYERZERO_BIGSTEPEDGE_HEIGHT = layerZeroBigStepEdgeHeight;
require(EdgeChallengeManagerLib.isPowerOfTwo(layerZeroSmallStepEdgeHeight),

"Small step height not power of 2");
LAYERZERO_SMALLSTEPEDGE_HEIGHT = layerZeroSmallStepEdgeHeight;

}

Figure C.22: Initialize function in EdgeChallengeManager.sol#L260-L279

● Redundant edge pending checks in the “confirm-by” functions. This affects
confirmEdgeByChildren, confirmByClaim, confirmByTime, and
confirmByOneStepProof.

/// @notice Confirm an edge if both its children are already confirmed
function confirmEdgeByChildren(EdgeStore storage store, bytes32 edgeId) internal {

require(store.edges[edgeId].exists(), "Edge does not exist");
require(store.edges[edgeId].status == EdgeStatus.Pending, "Edge not pending");

[...]

store.edges[edgeId].setConfirmed();
}

Figure C.23: confirmByChildren function in EdgeChallengeManager.sol#L544-L559

As we can see below, the setConfirmed function will also check whether the edge is
pending.

function setConfirmed(ChallengeEdge storage edge) internal {
require(edge.status == EdgeStatus.Pending, "Only Pending edges can be

Confirmed");
edge.status = EdgeStatus.Confirmed;

}

Figure C.24: setConfirmed function in EdgeChallengeManager.sol#L228-L231

● Checking the source event in the act function does not add any additional
validation since the valid state transitions are defined in the transition table.

Trail of Bits 103 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/EdgeChallengeManager.sol#L260-L279
https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L544-L559
https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/contracts/src/challengeV2/libraries/ChallengeEdgeLib.sol#L228-L231

// Edge is the source of a one-step-fork.
case edgeAtOneStepFork:

event, ok := current.SourceEvent.(edgeHandleOneStepFork)
if !ok {

return fmt.Errorf("bad source event: %s", event)
}

...
// Edge tracker should add a subchallenge level zero leaf.
case edgeAddingSubchallengeLeaf:

event, ok := current.SourceEvent.(edgeOpenSubchallengeLeaf)
if !ok {

return fmt.Errorf("bad source event: %s", event)
}

...

Figure C.25: Snippet of code for the act function in edge_tracker.go#L31-L145

● The prevAssertionId method from the ReadOnlyEdge interface has a misleading
name as it represents “The id of the assertion of the current challenge”; however, its
name suggests it represents “The id of the parent of the assertion of the current
challenge.”

● Confirmation checks should precede one-step proof checks. Edges that can be
one-step proven are uncommon (i.e., length-one SmallStep-type edges) so this will
be an “uncommon execution path,” and the check could therefore be made later in
the function to avoid the extra computation.

case edgeStarted:
canOsp, err := canOneStepProve(et.edge)
if err != nil {

log.WithFields(fields).WithError(err).Error("could not check if edge
can be one step proven")

return et.fsm.Do(edgeBackToStart{})
}
if canOsp {

return et.fsm.Do(edgeHandleOneStepProof{})
}
wasConfirmed, err := et.tryToConfirm(ctx)
if err != nil {

log.WithFields(fields).WithError(err).Debug("could not confirm edge
yet")

return et.fsm.Do(edgeBackToStart{})
}
if wasConfirmed {

return et.fsm.Do(edgeConfirm{})
}

Figure C.26: edgeStarted state in validator/edge_tracker.go#L40-L72

Trail of Bits 104 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/45af73ab267985a34417812760a76695ca95095d/validator/edge_tracker.go#L31-L145
https://github.com/OffchainLabs/challenge-protocol-v2/blob/cad398e6e37a93ea9654fa1e1f7fa70478ca4da5/validator/edge_tracker.go#L40-L72

● The nextInboxPosition variable in name (in Assertion.sol) is not clear as,
intuitively, one might think it refers to “the position of the inbox from which the next
assertion will start reading from”; however, the variable actually represents “the
number of inbox messages the next assertion will process” in the same fashion as
afterInboxPosition; perhaps a better name would be
nextAfterInboxPosition.

● There is duplicated validation of configHash. The validation in the if branch is
unnecessary, since it is exactly the same as the one done in precedence.

RollupLib.validateConfigHash(prevConfig, prevAssertion.configHash);

// Check that deadline has passed
require(block.number >= assertion.createdAtBlock +

prevConfig.confirmPeriodBlocks, "BEFORE_DEADLINE");

// Check that prev is latest confirmed
require(prevAssertionHash == latestConfirmed(),

"PREV_NOT_LATEST_CONFIRMED");

if (prevAssertion.secondChildBlock > 0) {
// if the prev has more than 1 child, check if this assertion is the

challenge winner
RollupLib.validateConfigHash(prevConfig, prevAssertion.configHash);
...

}

Figure C.27: Validation of configHash in
contracts/src/rollup/RollupUserLogic.sol#L104-L114

● GENESIS_NODE constant is never used.

// The assertion number of the initial assertion
uint64 internal constant GENESIS_NODE = 1;

Figure C.28: GENESIS_NODE constant in
contracts/src/rollup/RollupCore.sol#L106-L107

● assertionId and assertionHash are being used interchangeably, which causes
confusion; we recommend using only one of them.

Trail of Bits 105 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/blob/c2cc7813cdc3b8d6be73d3dbc32f9afc9ed536e6/contracts/src/rollup/RollupUserLogic.sol#L104-L114
https://github.com/OffchainLabs/challenge-protocol-v2/blob/c2cc7813cdc3b8d6be73d3dbc32f9afc9ed536e6/contracts/src/rollup/RollupCore.sol#L106-L107

D. Incident Response Recommendations

This section provides recommendations on formulating an incident response plan.

● Identify the parties (either specific people or roles) responsible for
implementing the mitigations when an issue occurs (e.g., deploying smart
contracts, pausing contracts, upgrading the front end, etc.).

● Document internal processes for addressing situations in which a deployed
remedy does not work or introduces a new bug.

○ Consider documenting a plan of action for handling failed remediations.

● Clearly describe the intended contract deployment process.

● Outline the circumstances under which Offchain Labs will compensate users
affected by an issue (if any).

○ Issues that warrant compensation could include an individual or aggregate
loss or a loss resulting from user error, a contract flaw, or a third-party
contract flaw.

● Document how the team plans to stay up to date on new issues that could
affect the system; awareness of such issues will inform future development
work and help the team secure the deployment toolchain and the external
on-chain and off-chain services that the system relies on.

○ Identify sources of vulnerability news for each language and component used
in the system, and subscribe to updates from each source. Consider creating
a private Discord channel in which a bot will post the latest vulnerability
news; this will provide the team with a way to track all updates in one place.
Lastly, consider assigning certain team members to track news about
vulnerabilities in specific system components.

● Determine when the team will seek assistance from external parties (e.g.,
auditors, affected users, other protocol developers) and how it will onboard
them.

○ Effective remediation of certain issues may require collaboration with
external parties.

Trail of Bits 106 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

● Define contract behavior that would be considered abnormal by off-chain
monitoring solutions.

It is a best practice to perform periodic dry runs of scenarios outlined in the incident
response plan to find omissions and opportunities for improvement and to develop
“muscle memory.” Additionally, document the frequency with which the team should
perform dry runs of various scenarios, and perform dry runs of more likely scenarios more
regularly. Create a template to be filled out with descriptions of any necessary
improvements after each dry run.

Trail of Bits 107 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

E. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

On June 5, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the
Offchain Labs team for the issues identified in this report. We reviewed each fix to
determine its effectiveness in resolving the associated issue.

In summary, of the 34 issues described in this report, Offchain Labs has resolved 30 issues
and has not resolved the remaining four issues. For additional information, please see the
Detailed Fix Review Results below.

ID Title Severity Status

1 Go Root function does not check for an empty
Merkle expansion

Medium Resolved

2 Go Root function does not accept merkle
expansion of MAX_LEVEL length

High Resolved

3 NewHistoryCommitment does not validate height Undetermined Resolved

4 Unused errors Informational Resolved

5 GeneratePrefixProof does not work in some cases High Resolved

6 Divergence in VerifyPrefixProof error handling Informational Resolved

7 Missing validation in Golang’s
GeneratePrefixProof function

Low Resolved

8 Substantial amount of code duplication Informational Resolved

Trail of Bits 108 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

9 Consider implementing “sanity checks” as
assertions

Informational Unresolved

10 Allow one-step proofs for length one
SmallStep-type unrivaled edges

Informational Resolved

11 Incorrect state transition in edgeAtOneStepProof Medium Resolved

12 Lack of a terminal state Informational Resolved

13 Possibly unnecessary state transition Informational Resolved

14 Possible state transitions never happen Informational Resolved

15 Consider failing early to minimize the impact of
griefing attacks

Undetermined Unresolved

16 Presumptive edge tracker never reaches
confirmation

High Resolved

17 Front-running a validator can trigger a denial of
service

High Resolved

18 *LevelZeroEdge snapshots are not updated High Resolved

19 Claimed edge’s timer of a BigStep edge is counted
twice

Medium Resolved

20 Top level assertion timer not included in honest
path timer calculation

High Resolved

21 Incorrect input parameter used to get the
unrivaled time of the honest top level assertion

High Resolved

Trail of Bits 109 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

22 The earliestCreatedRivalBlockNumber function
can be optimized to reduce looping

Informational Resolved

23 The localTimer function can be optimized to
reduce computation

Informational Resolved

24 Remove honest nodes from the mutual ids map Informational Unresolved

25 Unsafe Uint64 operation for block number Low Resolved

26 Watcher could miss edges validated by time Medium Resolved

27 Possible nil deref when getting a top level
assertion

Low Resolved

28 Discrepancy between on and off-chain
confirmation timers

Medium Resolved

29 Front-running certain validator operations leads
to honest edges not being tracked

High Resolved

30 Consider adding an EdgeAwaitingConfirmation
state to avoid unnecessary computation

Medium Resolved

31 Unclear code comment regarding the ability to
disable and enable staking

Informational Resolved

32 Validate the withdrawn amount by a staker is
greater than zero

Low Resolved

33 Consider deleting the staker when their stake is
reduced to zero

Low Unresolved

34 Initial assertion’s status is not confirmed Informational Resolved

Trail of Bits 110 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

Detailed Fix Review Results
TOB-ARBCH-1: Go Root function does not check for an empty Merkle expansion
Resolved in PR #179. The Go Root function now has the same behavior as Solidity's
counterpart by checking if the Merkle expansion is empty.

TOB-ARBCH-2: Go Root function does not accept Merkle expansion of MAX_LEVEL
length
Resolved in PR #194. The Go Root function now has the same behavior of Solidity's
counterpart by accepting a Merkle expansion of MAX_LEVEL length.

TOB-ARBCH-3: NewHistoryCommitment does not validate height
Resolved in PR #342. The height parameter of the NewHistoryCommitment function has
been removed and the height is directly inferred from the leaves’ length.

TOB-ARBCH-4: Unused errors
Resolved in PR #202. The unused errors were removed.

TOB-ARBCH-5: GeneratePrefixProof will not work in some cases
Resolved in PR #213. The zzz variable is used in MostSignificantBit instead of yyy.

TOB-ARBCH-6: Divergence in VerifyPrefixProof error handling
Resolved in PR #214. Solidity’s verifyPrefixProof function was updated to return an
error if the proofIndex is out of range.

TOB-ARBCH-7:Missing validation in Golang’s GeneratePrefixProof function
Resolved in PR #223 and PR #342. Additional checks were added to the
GeneratePrefixProof function. Now it returns an error if the prefixHeight is equal to
0, if the leaves are empty and if the prefixHeight is greater or equal to postHeight.

TOB-ARBCH-8: Substantial amount of code duplication
Resolved in PR #225. The code duplication in the hasLengthOneRival function was
removed.

TOB-ARBCH-9: Consider implementing “sanity checks” as assertions
Unresolved. The client provided the following context:

Won’t fix, as we prefer to keep using revert.

TOB-ARBCH-10: Allow one-step proofs for length one SmallStep-type unrivaled
edges
Resolved in PR #224. The confirmEdgeByOneStepProof function can now be called for a
SmallStep edge of length 1, even if unrivaled.

Trail of Bits 111 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/pull/179
https://github.com/OffchainLabs/challenge-protocol-v2/pull/194
https://github.com/OffchainLabs/challenge-protocol-v2/pull/342
https://github.com/OffchainLabs/challenge-protocol-v2/pull/202
https://github.com/OffchainLabs/challenge-protocol-v2/pull/213
https://github.com/OffchainLabs/challenge-protocol-v2/pull/214
https://github.com/OffchainLabs/challenge-protocol-v2/pull/223
https://github.com/OffchainLabs/challenge-protocol-v2/pull/342
https://github.com/OffchainLabs/challenge-protocol-v2/pull/225
https://github.com/OffchainLabs/challenge-protocol-v2/pull/224

TOB-ARBCH-11: Incorrect state transition in edgeAtOneStepProof
Resolved in PR #260. The state transition in case of an edgeAtOneStepProof has been
corrected to go in the EdgeConfirmed state.

TOB-ARBCH-12: Lack of a terminal state
Resolved in PR #260. An EdgeConfirmed state has been added that represents a terminal
state.

TOB-ARBCH-13: Possibly unnecessary state transition
Resolved in PR #294. The presumptive state was removed.

TOB-ARBCH-14: Possible state transitions never happen
Resolved in PR #294. The state transitions were removed from the transition table.

TOB-ARBCH-15: Consider failing early to minimize the impact of griefing attacks
Unresolved. The client provided the following context:

Fixing would require a big overhaul of the entire function logic and we think we are doing
the best we can here within reasonable bounds.

TOB-ARBCH-16: Presumptive edge tracker never reaches confirmation
Resolved in PR #294. The presumptive state was removed.

TOB-ARBCH-17: Front-running a validator can trigger a denial of service
Resolved in PR #303 and PR #313. Before executing the on-chain action, it checks whether
the bisection has already happened by checking the existence of the upper child.

TOB-ARBCH-18: *LevelZeroEdge snapshots are not updated
Resolved in PR #279. Snapshots are no longer used; instead, real edges are tracked that will
query the chain for data that can change.

TOB-ARBCH-19: Claimed edge’s timer of a BigStep edge is counted twice
Resolved in PR #280 (commit 57f67e2). The addition of the claimedEdgeTimer has been
removed.

TOB-ARBCH-20: Top level assertion timer not included in honest path timer
calculation
Resolved in PR #327. The HonestPathTimer function now queries the smart contract for
the assertion and then uses its creation block to calculate its unrivaled time (see
AssertionUnrivaledBlocks).

Trail of Bits 112 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/pull/260
https://github.com/OffchainLabs/challenge-protocol-v2/pull/260
https://github.com/OffchainLabs/challenge-protocol-v2/pull/294
https://github.com/OffchainLabs/challenge-protocol-v2/pull/294
https://github.com/OffchainLabs/challenge-protocol-v2/pull/294
https://github.com/OffchainLabs/challenge-protocol-v2/pull/303
https://github.com/OffchainLabs/challenge-protocol-v2/pull/313
https://github.com/OffchainLabs/challenge-protocol-v2/pull/279
https://github.com/OffchainLabs/challenge-protocol-v2/pull/280
https://github.com/OffchainLabs/challenge-protocol-v2/pull/280/commits/57f67e2f57daa1876c080678aa07b8d8e9c51aee
https://github.com/OffchainLabs/challenge-protocol-v2/pull/327

TOB-ARBCH-21: Incorrect input parameter used to get the unrivaled time of the
honest top level assertion
Resolved in PR #327. The right parameter (the assertion ID) is now being used to call the
AssertionUnrivaledBlocks function, which previously was named
AssertionUnrivaledTime.

TOB-ARBCH-22: The earliestCreatedRivalBlockNumber function can be optimized
to reduce looping
Resolved in PR #342. It now uses only one loop to compute the earliest created rival block
number.

TOB-ARBCH-23: The localTimer function can be optimized to reduce computation
Resolved in PR #316. The if statement has been changed to blockNum <=
e.CreatedAtBlock().

TOB-ARBCH-24: Remove honest nodes from the mutual ids map
Unresolved. The client provided the following context:

Removing this ended up breaking quite a lot of our tests in a way that was difficult to
debug, and would rather keep the behavior as is given its usage is well-constrained in a
package.

TOB-ARBCH-25: Unsafe Uint64 operation for block number
Resolved in PR #329. The validation that requires the number to be an Uint64 has been
added.

TOB-ARBCH-26:Watcher could miss edges validated by time
Resolved in PR #293 (commit f9cdf8d). The Watch function now checks for edges confirmed
by time before entering the polling loop.

TOB-ARBCH-27: Possible nil deref when getting a top level assertion
Resolved in PR #293 (commit f9cdf8d). The top-level assertion is checked to not be None.

TOB-ARBCH-28: Discrepancy between on and o�-chain confirmation timers
Resolved in PR #302. The Solidity implementation of confirmation now allows
confirmations when the cumulative timer of the edge is higher than or equal to the
confirmation threshold (the same behavior as the Go counterpart).

TOB-ARBCH-29: Front-running certain validator operations leads to honest edges
not being tracked
Resolved in PR #303. The code now performs some pre-checks before executing on-chain
transactions to ensure these have not already happened.

Trail of Bits 113 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/pull/327
https://github.com/OffchainLabs/challenge-protocol-v2/pull/342
https://github.com/OffchainLabs/challenge-protocol-v2/pull/316
https://github.com/OffchainLabs/challenge-protocol-v2/pull/329
https://github.com/OffchainLabs/challenge-protocol-v2/pull/293
https://github.com/OffchainLabs/challenge-protocol-v2/pull/293/commits/f9cdf8dc8eaec8782e71f43d603d4798a1d63d2d
https://github.com/OffchainLabs/challenge-protocol-v2/pull/293
https://github.com/OffchainLabs/challenge-protocol-v2/pull/293/commits/f9cdf8dc8eaec8782e71f43d603d4798a1d63d2d
https://github.com/OffchainLabs/challenge-protocol-v2/pull/302
https://github.com/OffchainLabs/challenge-protocol-v2/pull/303

TOB-ARBCH-30: Consider adding an EdgeAwaitingConfirmation state to avoid
unnecessary computation
Resolved in commit b1c5b. A new state EdgeAwaitingConfirmation was introduced for
edges that have already performed the relevant operations and are awaiting confirmation
(e.g., already bisected edges).

TOB-ARBCH-31: Unclear code comment regarding the ability to disable and enable
staking
Resolved in PR #315. Code comments were updated to reflect the latest implementation.

TOB-ARBCH-32: Validate the withdrawn amount by a staker is greater than zero
Resolved in PR #321. The withdrawing function for the ERC20 rollup now requires the
amount to be greater than zero.

TOB-ARBCH-33: Consider deleting the staker when their stake is reduced to zero
Unresolved. The client mentioned that they will fix this finding.

TOB-ARBCH-34: Initial assertion’s status is not confirmed
Resolved in PR #344. The initial assertion’s status is set to be confirmed.

Trail of Bits 114 Arbitrum Chains Challenge Protocol v2 Assessment
PUBLIC

https://github.com/OffchainLabs/challenge-protocol-v2/commit/b1c5b83476fa62b16e0a73dff9a9223a482d17c6
https://github.com/OffchainLabs/challenge-protocol-v2/pull/315
https://github.com/OffchainLabs/challenge-protocol-v2/pull/321
https://github.com/OffchainLabs/challenge-protocol-v2/pull/344

